西安电子科技大学学报 ›› 2022, Vol. 49 ›› Issue (3): 191-198.doi: 10.19665/j.issn1001-2400.2022.03.021

• 计算机科学与技术&人工智能 • 上一篇    下一篇

结合3D-CNN和频-空注意力机制的EEG情感识别

张静(),张雪英(),陈桂军(),闫超()   

  1. 太原理工大学 信息与计算机学院,山西 太原 030024
  • 收稿日期:2021-07-21 修回日期:2022-01-30 出版日期:2022-06-20 发布日期:2022-07-04
  • 通讯作者: 张雪英
  • 作者简介:张静(1993—),男,太原理工大学博士研究生,E-mail: zhangj_ty@163.com|陈桂军(1987—),男,讲师,博士,E-mail: chenguijun@tyut.edu.cn|闫超(1998—),男,太原理工大学硕士研究生,E-mail: 15203508758@163.com
  • 基金资助:
    山西省回国留学人员科研资助项目(HGKY2019025);山西省研究生教育创新计划项目(2020BY130);教育部产学合作协同育人项目(202002035019)

EEG emotion recognition based on the 3D-CNN and spatial-frequency attention mechanism

ZHANG Jing(),ZHANG Xueying(),CHEN Guijun(),YAN Chao()   

  1. School of Information and Computer Science,Taiyuan University of Technology,Taiyuan 030024,China
  • Received:2021-07-21 Revised:2022-01-30 Online:2022-06-20 Published:2022-07-04
  • Contact: Xueying ZHANG

摘要:

目前,将深度学习用于脑电情感识别的研究已提出很多方法,但大多数方法并没有同时考虑脑电信号在时间、空间以及频率三个维度上的信息。基于此,提出一种结合频率-空间注意力机制的三维卷积神经网络(FSA-3D-CNN),同时考虑脑电信号在时间、空间和频率三个维度的信息,从而提高情感识别的准确性。首先,根据脑电信号的特性设计了一种新颖的四维特征结构,对时域分段后的脑电信号分别提取微分熵特征,并将其转换为四维矩阵用于训练深度模型。然后,针对四维特征矩阵结构改进现有的3D-CNN情感识别模型,同时利用脑电信号中的时间、空间和频率的信息。最后,设计一种频率-空间注意力机制自适应地分配脑电信号的频率和空间通道的权值,挖掘脑电信号中更能显著反映情感状态变化的空间和频率信息。FSA-3D-CNN模型在DEAP公共情感数据集的效价维和唤醒维二分类准确率分别达到了约95.87%和95.23%,在效价-唤醒维的四分类准确率达到约94.53%,比现有的卷积神经网络和LSTM情感识别模型均取得了显著的提升。

关键词: 脑电信号, 情感识别, 微分熵, 深度学习, 注意力机制

Abstract:

Currently,many deep learning methods have been proposed for EEG-based emotion recognition.However,most of them do not fully consider the correlated information from temporal,spatial,and frequency dimensions of EEG signals,on the basis of which a three-dimensional convolutional neural network based on the spatial-frequency attention mechanism (FSA-3D-CNN) is proposed to improve the accuracy of emotion recognition,in which the emotion correlated information on EEG can be learned from temporal,spatial,and frequency perspectives effectively.First,the differential entropy features are extracted from the time-domain segmented EEG signals,and a novel 4D feature structure is designed to obtain the four-dimensional feature matrix for training the deep learning model according to the characteristics of the EEG signals.Then,the existing 3D-CNN is improved according to the 4D feature structure,which makes full use of the information on temporal,spatial,and frequency dimensions of EEG signals.Finally,a spatial-frequency attention mechanism is designed to adaptively allocate the weights to the spatial and frequency channels of the EEG signals,and extract the spatial and frequency information on EEG signals that can more significantly reflect changes in emotional state.The DEAP emotion dataset is used to test the performance of our method.Experimental results have demonstrated that the proposed FSA-3D-CNN method can achieve the average accuracy of 95.87% and 95.23% for the two classifications between arousal and valence dimension and the average accuracy of 94.53% for four classifications of arousal-valence dimension,which has achieved significant improvement than that of the existing CNN and LSTM emotion recognition methods.

Key words: electroencephalography, emotion recognition, differential entropy, deep learning, attention

中图分类号: 

  • TP391