西安电子科技大学学报 ›› 2022, Vol. 49 ›› Issue (4): 1-7.doi: 10.19665/j.issn1001-2400.2022.04.001

• 信息与通信工程 •    下一篇

欠采样跳频通信信号深度学习重构方法

齐佩汉1(),李冰2(),谢爱平3(),高向兰1()   

  1. 1.西安电子科技大学 通信工程学院,陕西 西安 710071
    2.中国人民解放军31007部队,北京 100100
    3.中国电子科技集团公司第二十九研究所,四川 成都 610036
  • 收稿日期:2021-10-28 出版日期:2022-08-20 发布日期:2022-08-15
  • 作者简介:齐佩汉(1986—),男,副教授,博士,E-mail: phqi@xidian.edu.cn|李 冰(1977—),男,正高级工程师,博士,E-mail: lb-7728@163.com|谢爱平(1984—),男,高级工程师,硕士,E-mail: xap7858263@126.com|高向兰(1999—),女,西安电子科技大学硕士研究生,E-mail: gaoxianglan_xkd@163.com
  • 基金资助:
    国家自然科学基金(62171334);国家自然科学基金(61901328);中国博士后基金(2018M631122);国家重点研发计划(2021YFC2203503);重庆集成电路创新研究院产学研项目(CQIRI-2021CXY-Z07)

Deep learning reconstruction algorithm for incomplete samples of frequency hopping communication signals

QI Peihan1(),LI Bing2(),XIE Aiping3(),GAO Xianglan1()   

  1. 1. School of Communications Engineering,Xidian University,Xi’an 710071,China
    2. Unit 31007 of Chinese PLA,Beijing 100100,China
    3. The 29th Research Institute of China Electronics Technology Group Corporation,Chengdu,610036,China
  • Received:2021-10-28 Online:2022-08-20 Published:2022-08-15

摘要:

压缩频谱感知可以远低于奈奎斯特采样的速率来获取宽带跳频通信信号,但欠采样信号重构作为压缩频谱感知的关键组成环节,将更加直接地决定跳频通信接收性能。针对跳频通信信号压缩感知存在的欠采样重构精度低、计算复杂度高、迭代重构时间长等问题,提出欠采样跳频通信信号深度学习重构方法,将深度学习引入到宽带稀疏欠采样信号重构过程中,设计欠采样样本输入层网络适应结构,再利用变分自编码器构造生成式重构网络替代稀疏优化求解,实现免迭代欠采样跳频通信信号重构输出。仿真并分析了欠采样结构配置、网络模型设置以及信噪比等参数对信号重构性能的影响。仿真表明,相对于稀疏度自适应匹配追踪、正交匹配追踪等经典欠采样信号重构算法以及卷积神经网络欠采样信号重构方法,所提方法在重构误差和重构时间等方面均具有性能优势。该方法可准确、高效、实时地完成欠采样跳频通信信号重构,可成为解决宽带跳频通信信号接收和处理瓶颈的有效途径之一。

关键词: 压缩感知, 跳频通信信号, 深度学习, 信号重构

Abstract:

Compressed spectrum sensing can obtain broadband frequency hopping(FH) communications signals at a rate much lower than that by the Nyquist sampling,but under-sampling signal reconstruction,as a key component of compressed spectrum sensing,will more directly determine the receiving performance of FH communication.Aiming at the problems of low under-sampling reconstruction accuracy,high computational complexity,and long iterative reconstruction time in compressed FH communications signal sensing,this paper proposes a deep learning reconstruction method for the under-sampling FH communication signal.In the proposed method,deep learning is introduced into the reconstruction of the wideband sparse under-sampling signal,a suitable input layer network structure is designed for under-sampling samples,and then a generative reconstruction network is constructed to replace sparse optimization.Finally,under-sampling signal reconstruction without iteration is realized.The influence of parameters such as under-sampling structure configuration,network model setting,and signal-to-noise ratio on signal reconstruction performance is simulated.Simulation results show that compared with the classical sparsity adaptive matching pursuit(SAMP),orthogonal matching pursuit(OMP) signal reconstruction algorithms,and the under-sampling signal reconstruction method based on the convolutional neural network,the proposed method has a better performance in reconstruction error and reconstruction time.The proposed method can reconstruct the under-sampling FH communications signal accurately,efficiently,and in real time,and can be one of the effective ways to solve the bottleneck of receiving and processing signals of wideband FH communications.

Key words: compressed sensing, frequency hopping communications signal, deep learning, signal reconstruction

中图分类号: 

  • TN929.5