[1] |
DEMROZI F, PRAVADELLI G, BIHORAC A, et al. Human Activity Recognition Using Inertial,Physiological and Environmental Sensors:a Comprehensive Survey[J]. IEEE Access, 2020, 8:210816-210836.
doi: 10.1109/ACCESS.2020.3037715
|
[2] |
DANGL M, MIN K, WANG H, et al. Sensor-Based and Vision-Based Human Activity Recognition:A Comprehensive Survey[J]. Pattern Recognition, 2020, 108:107561.
doi: 10.1016/j.patcog.2020.107561
|
[3] |
XIA K, HUANG J, WANG H. LSTM-CNN Architecture for Human Activity Recognition[J]. IEEE Access, 2020, 8:56855-56866.
doi: 10.1109/ACCESS.2020.2982225
|
[4] |
IHIANLEI K, NWAJANA A O, EBENUWA S H, et al. A Deep Learning Approach for Human Activities Recognition from Multimodal Sensing Devices[J]. IEEE Access, 2020, 8:179028-179038.
doi: 10.1109/ACCESS.2020.3027979
|
[5] |
SHENG T, HUBER M. Siamese Networks for Weakly Supervised Human Activity Recognition[C]// 2019 IEEE International Conference on Systems,Man and Cybernetics.Piscataway:IEEE, 2019:4069-4075.
|
[6] |
BROMLEY J, GUYON I, LECUN Y, et al. Signature Verification Using a "Siamese" Time Delay Neural Network[J]. International Journal of Pattern Recognition and Artificial Intelligence, 1993, 7(4):669-688.
doi: 10.1142/S0218001493000339
|
[7] |
郭惠勇. 多传感器信息融合技术的研究与进展[J]. 中国科学基金, 2005, 1:5.
|
|
GUO Hui Yong. Researches and Advances in Multi-Sensor Information Fusion Technology[J]. Bulletin of National Natural Science Foundation of China, 2005, 1:5.
|
[8] |
余志超, 张瑞红. 结合深度轮廓特征的改进孪生网络跟踪算法[J]. 西安电子科技大学学报, 2020, 47(3):40-49.
|
|
YU Zhichao, ZHANG Ruihong. Improved Siamese Network Based Object Tracking Combined with the Deep Contour Feature[J]. Journal of Xidian University, 2020, 47(3):40-49.
|
[9] |
HAMMERLA N Y, HALLORAN S, PLÖTZ T. Deep,Convolutional,and Recurrent Models for Human Activity Recognition Using Wearables[C]// Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York: AAAI, 2016:1533-1540.
|
[10] |
SNOEK J, LAROCHELLE H, ADAMS R P. Practical Bayesian Optimization of Machine Learning Algorithms[EB/OL]. [2012-06-13]. https://arxiv.org/abs/1206.2944.
|
[11] |
LOSHCHILOV I, HUTTER F. Decoupled Weight Decay Regularization[EB/OL]. [2017-11-14]. https://doi.org/10.48550/arXiv.1711.05101.
|
[12] |
BAO L, INTILLE S S. Activity Recognition from User-Annotated Acceleration Data[C]// International Conference on Pervasive Computing.Berlin:Springer, 2004:1-17.
|
[13] |
HSU Y L, YANG S C, CHANG H C, et al. Human Daily and Sport Activity Recognition Using a Wearable Inertial Sensor Network[J]. IEEE Access, 2018:31715-31728.
|
[14] |
LIU R, PENG L, TONG L, et al. The Design of Wearable Wireless Inertial Measurement Unit for Body motion Capture System[C]// 2018 IEEE International Conference on Intelligence and Safety for Robotics.Piscataway:IEEE, 2018:557-562.
|
[15] |
SI C, JING Y, WANG W, et al. Skeleton-Based Action Recognition with Spatial Reasoning and Temporal Stack Learning[C]// Proceedings of the European Conference on Computer Vision.Berlin:Springer, 2018:103-118.
|
[16] |
王波, 邓科. DB-SMOTE及多层堆叠用于心律失常识别[J]. 西安电子科技大学学报, 2021, 48(4):136-143.
|
|
WANG Bo, DENG Ke. DB-SMOTE and Multi-Layer Stacking Used for Arrhythmia Recognition[J]. Journal of Xidian University, 2021, 48(4):136-143.
|
[17] |
HAN H, WANG W Y, MAO B H. Borderline-SMOTE:A New Over-Sampling Method in Imbalanced Data Sets Learning[C]// International Conference on Intelligent Computing.Berlin:Springer, 2005:878-887.
|
[18] |
AHMAD W, KAZMI B M, ALI H. Human Activity Recognition Using Multi-Head CNN Followed by LSTM[C]// 2019 15th International Conference on Emerging Technologies.Piscataway:IEEE, 2019:1-6.
|