西安电子科技大学学报 ›› 2022, Vol. 49 ›› Issue (4): 201-212.doi: 10.19665/j.issn1001-2400.2022.04.023

• 电子科学与技术 & 其他 • 上一篇    

混合式监督学习的三维模型对应关系计算

杨军1,2(),李金泰1()   

  1. 1.兰州交通大学 电子与信息工程学院,甘肃 兰州 730070
    2.兰州交通大学 测绘与地理信息学院,甘肃 兰州 730070
  • 收稿日期:2021-05-17 出版日期:2022-08-20 发布日期:2022-08-15
  • 作者简介:杨 军(1973—),男,教授,博士,E-mail: yangj@mail.lzjtu.cn
  • 基金资助:
    国家自然科学基金(61862039);甘肃省科技计划(20JR5RA429);2021年度中央引导地方科技发展资金(2021-51);兰州市人才创新创业项目(2020-RC-22);兰州交通大学天佑创新团队(TY202002)

Correspondence calculation of 3D shapes by mixed supervision learning

YANG Jun1,2(),LI Jintai1()   

  1. 1. School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
    2. Faculty of Geomatics,Lanzhou Jiaotong University,Lanzhou 730070,China
  • Received:2021-05-17 Online:2022-08-20 Published:2022-08-15

摘要:

针对近似等距非刚性三维模型的对应关系计算易受模型拓扑结构改变而导致准确率下降的问题,提出一种采用混合监督深度函数映射网络计算对应关系的新方法。首先,在弱监督特征提取模块中将三维点云源模型与目标模型通过弱监督学习进行近似刚性对齐,并直接学习原始的三维几何特征,在获取更具鉴别力特征的同时,解决模型自身对称性影响对应关系准确率的问题;其次,在无监督函数映射模块中将提取到的特征转换为谱描述符以得到函数映射矩阵,并对该矩阵施加加权正则化约束项进而得到最优的函数映射矩阵,在解决函数映射矩阵约束性不足问题的同时,减少算法对带标签数据的依赖,降低算法的人工成本;最后,在后处理模块中采用ZoomOut算法将最优函数映射矩阵恢复至精确的逐点映射。实验结果表明,该算法在公开的FAUST数据集、SCAPE数据集和SURREAL数据集上所构建的三维模型对应关系测地误差均小于目前的主流方法,对应关系结果更加准确,纹理映射结果更加平滑,且具有良好的泛化能力。

关键词: 对应关系, 弱监督, 无监督, 混合监督, 深度函数映射

Abstract:

The focus of this paper is on the accuracy of existing shape correspondence methods which is easily degenerated by the topological changes of the near-isometric non-rigid 3D shapes.The novel approach we propose in this paper is based on a Mixed Supervision Deep Functional Maps Network (MSDFMNet).First,in the weakly supervised feature extraction module,the 3D point clouds representation forms of both source and target shapes are approximately rigidly aligned through weakly supervised learning,and then the features are learned directly from raw shape geometry,which leads to more discriminative features while solving the problem that the symmetry of the shape itself affects the accuracy of the correspondence.Second,by turning the extracted features into their corresponding spectral feature descriptors in the unsupervised functional map module,we build the matrix of functional maps.We then apply the weighted regularization to obtain the optimal functional maps matrix.In solving the problem of insufficient constraint of the functional maps matrix,the need for labeled data and the labor cost of the algorithm is also reduced.Finally,the optimal functional maps matrix is refined in the post-processing module by using the ZoomOut algorithm to recover the precise point-to-point mappings.Experimental results have shown that the geodesic errors of the 3D shape correspondence constructed by this algorithm on the FAUST,SCAPE and SURREAL dataset are smaller than those of the current commonly used methods,and that the correspondence results are more accurate,and texture mapping results are smoother.Our algorithm has a good generalization ability.

Key words: shape correspondence, weakly supervised learning, unsupervised learning, mixed supervision, deep functional maps

中图分类号: 

  • TP391.4