西安电子科技大学学报 ›› 2022, Vol. 49 ›› Issue (5): 47-59.doi: 10.19665/j.issn1001-2400.2022.05.006

• 信息与通信工程 • 上一篇    下一篇

改进多目标蚁狮算法的WSNs节点部署策略

张浩1(),覃涛1(),徐凌桦1(),王霄1,2(),杨靖1,2()   

  1. 1.贵州大学 电气工程学院,贵州 贵阳 550025
    2.贵州省互联网+协同智能制造重点实验室,贵州 贵阳 550025
  • 收稿日期:2021-07-13 出版日期:2022-10-20 发布日期:2022-11-17
  • 通讯作者: 杨 靖(1973—),男,教授,博士,E-mail:jyang7@gzu.edu.cn
  • 作者简介:张 浩(1997—),男,贵州大学硕士研究生,E-mail:497009040@qq.com;覃 涛(1980—),男,讲师,E-mail:1147342997@qq.com;徐凌桦(1975—),男,副教授,硕士,E-mail:yj.china@126.com;王 霄(1985—),男,副教授,博士,E-mail:xwang9@gzu.edu
  • 基金资助:
    国家自然科学基金(61861007);国家自然科学基金(61640014);贵州省工业攻关项目(黔科合支撑[2019]2152);贵州省科技基金(黔科合基础[2020]1Y266);贵州省教育厅创新群体项目(黔教合KY字[2021]012);贵州省教育厅案例库项目(KCALK201708);贵州省教育厅特色重点学科项目(黔学科ZDXK[2015]8)

WSNs node deployment strategy based on the improved multi-objective ant-lion algorithm

ZHANG Hao1(),QIN Tao1(),XU Linghua1(),WANG Xiao1,2(),YANG Jing1,2()   

  1. 1. Electrical Engineering College,Guizhou University,Guiyang 550025,China
    2. Guizhou Provincial Key Laboratory of Internet+Intelligent Manufacturing,Guiyang 550025,China
  • Received:2021-07-13 Online:2022-10-20 Published:2022-11-17

摘要:

针对无线传感网络节点部署中需要均衡覆盖率、连通度、节点数目等问题,构建了最低覆盖率与节点间连通性为约束条件的多目标节点部署模型,利用Pareto最优解集的思想,提出了一种基于改进多目标蚁狮算法的节点部署策略。首先,使用Fuch混沌映射初始化种群,以增加种群的多样性,同时引入自适应收缩边界因子改善算法易陷入局部最优的缺点;然后,利用时变策略对蚂蚁位置扰动以增强算法的寻优能力;再后,通过测试函数与其他多目标算法进行对比分析,结果表明改进后的算法在不同的测试函数上均能获得最小的世代距离与反向世代距离值,验证了所提策略的有效性;最后,将改进多目标蚁狮算法应用于无线传感器网络多目标节点部署中。仿真结果表明,相对于其他几种多目标算法,改进多目标蚁狮算法能有效解决无线传感器网络节点的多目标优化部署问题,提高了监测区域覆盖率与连通性,并为决策者提供更多可行解。

关键词: 无线传感网络, 节点部署, 多目标优化, 蚁狮算法, Pareto原则

Abstract:

In order to balance the coverage,connectivity and number of nodes in the deployment of wireless sensor networks (WSNs),a multi-objective node deployment model with the minimum coverage and connectivity between nodes as the constraint conditions is constructed,and by using the ideology of the Pareto optimal solution set,a node deployment strategy based on the improved multi-objective ant-lion Algorithm (IMOALO) is proposed.First,the Fuch chaotic map is used to initialize the population and increase the diversity of population.At the same time,the performance of the IMOALO is improved by introducing the adaptive shrinkage boundary factor,which can overcome the shortcoming of being easily plunged into local optimal of the MOALO.Second,the time-varying strategy position disturbance is used to the ant for improving the optimization ability of the algorithm.Third,a comparison of the test function with other multi-objective algorithms shows that the improved algorithm can lead to the minimum GD and IGD values on different test functions,which verifies the effectiveness of the proposed strategy.Finally,the IMOALO is applied to the multi-objective node deployment in WSNs.Simulation results show that compared with other multi-objective algorithms,the IMOALO can effectively solve the multi-objective optimization deployment problem of the nodes in WSNs,improve the coverage and connectivity of the monitoring area,and provide more feasible solutions for decision makers.

Key words: wireless sensor networks, node deployment, multi-objective optimization, ant lion algorithm, Pareto principle

中图分类号: 

  • TP393