西安电子科技大学学报 ›› 2022, Vol. 49 ›› Issue (5): 137-144.doi: 10.19665/j.issn1001-2400.2022.05.016

• 计算机科学与技术 & 人工智能 • 上一篇    下一篇

一种改进CenterNet的轻量化目标检测算法

李悦言(),程培涛(),杜淑幸()   

  1. 西安电子科技大学 机电工程学院,陕西 西安 710071
  • 收稿日期:2021-07-06 出版日期:2022-10-20 发布日期:2022-11-17
  • 通讯作者: 程培涛(1978—),男,副教授,博士,Email:chengpeitao@163.com
  • 作者简介:李悦言(1997—),男,西安电子科技大学硕士研究生,E-mail:a15502419367@163.com;杜淑幸(1965—),女,教授,博士,E-mail:sxdu@xidian.edu.cn
  • 基金资助:
    国家自然科学基金(61871308);国家自然科学基金(61972305);陕西省重点研发计划(2021ZDLGY02-03)

Lightweight object detection algorithm based on the improved CenterNet

LI Yueyan(),CHENG Peitao(),DU Shuxing()   

  1. School of Mechanical Electro Engineering,Xidian University,Xi’an 710071,China
  • Received:2021-07-06 Online:2022-10-20 Published:2022-11-17

摘要:

CenterNet算法结构复杂,导致其参数量大、计算复杂度高和检测速度较慢。针对这一问题,提出了一种CenterNet-encoder算法。该算法使用深度为104层的沙漏网络作为backbone,并将其中的残差模块替换为fire模块来减少算法的参数量,提高算法的计算速度;另外,在backbone和head之间加入了编码层,在不损失分辨率的同时增大了感受野,减少了内存的占用,让输出囊括更多尺度的信息;最后,使用均方误差损失进行边界框的回归,加快算法的收敛,进一步提升了算法的检测精度。CenterNet-encoder算法最终在MS-COCO test-dev数据集上的平均检测精度为40.5%,参数量为47×106。在AMD5900X/32GB/RTX3090环境配置下,检测速度达到了18帧/s。实验结果表明,CenterNet-encoder算法虽然牺牲了一定的精度,但参数量比原算法下降了约77.6%,同时检测速度提升了约69.3%。与其他轻量化目标检测算法相比,在参数量、推理时间和检测精度上也有一定的优势。

关键词: fire模块, 轻量化, 编码层, 目标检测

Abstract:

Due to the complex structure,there are a large number of parameters in the CenterNet,which leads to a high computational complexity and long inference time.To solve this problem,a CenterNet-encoder algorithm is proposed for lightweight object detection.First,the fire module is used in the backbone to reduce the number of parameters and increase the calculation speed.Then,an encoding layer is utilized between the backbone and the head,which can increase the receptive field and obtain more accurate corners and center points for heatmaps.Finally,MSE loss is employed in bounding box regression,which accelerates the convergence and further improves the performance.The proposed algorithm achieves 40.5 AP on the MS-COCO test-dev benchmark with 47M parameters.Under the AMD5900X\32GB\RTX3090 environment configuration,the detection speed reaches 18FPS.Experimental results show that the performance of the proposed method is better than other lightweight methods in the number of parameters,inference time and detection accuracy.Although the precision of the proposed method is slightly lower than that of the CenterNet,the number of parameters is reduced by 77.6%,and the inference speed is increased by 69.3%.

Key words: fire module, lightweight, encoder, object detection

中图分类号: 

  • TP391