西安电子科技大学学报 ›› 2022, Vol. 49 ›› Issue (5): 166-174.doi: 10.19665/j.issn1001-2400.2022.05.019

• 计算机科学与技术 & 人工智能 • 上一篇    下一篇

一种采用动态子空间的小样本图像分类算法

任佳兴1(),曹玉东1(),曹睿2(),闫佳1()   

  1. 1.辽宁工业大学 电子与信息工程学院,辽宁 锦州 121001
    2.大连交通大学 自动化与电气工程学院,辽宁 大连 116028
  • 收稿日期:2021-09-30 出版日期:2022-10-20 发布日期:2022-11-17
  • 通讯作者: 曹玉东(1971—),男,副教授,博士,E-mail:caoyd@lnut.edu.cn
  • 作者简介:任佳兴(1996—),男,辽宁工业大学硕士研究生,E-mail:784751221@qq.com;曹 睿(2001—),男,大连交通大学本科生,E-mail:ruicao@sina.cn;闫 佳(1994—),男,辽宁工业大学硕士研究生,E-mail:1761865308@qq.com
  • 基金资助:
    辽宁省自然科学基金(2019ZD0702)

Algorithm for classification of few-shot images by dynamic subspace

REN Jiaxing1(),CAO Yudong1(),CAO Rui2(),YAN Jia1()   

  1. 1. School of Electronics and Information Engineering,Liaoning University of Technology,Jinzhou 121001,China
    2. School of Automation and Electrical Engineering,Dalian Jiaotong University,Dalian 116028,China
  • Received:2021-09-30 Online:2022-10-20 Published:2022-11-17

摘要:

针对当前基于度量学习的小样本图像分类算法中普遍存在的图像分类精度不高与泛化性能一般的问题,提出了一种采用动态子空间的小样本图像分类算法。首先,使用残差神经网络提取小样本图像特征,对各类特征向量进行分解后,动态生成表征图像类别的正交化投影子空间,增强类间特征的差异性;其次,通过融合子空间损失函数与交叉熵损失函数,增强同类样本的特征相似性,构建基于小样本学习的动态子空间分类器,随采样量与样本相似度的变化动态更新子空间的类间距离;最后,将目标图像的特征向量输入动态子空间分类器,使用平方欧氏距离与softmax函数计算类别概率,预测其所属类别。在mini-ImageNet、CIFAR-100和Pascal VOC2007小样本数据集上进行性能测试,并与当前主流的小样本图像分类算法进行了比较,所提出算法的图像分类精度高于对比算法。在5-way 5-shot的条件下,分类精度比当前性能较好的深度子空间分类网络提高了2.3%。实验结果表明,所提出的算法具有较强的泛化性能与抗干扰能力。

关键词: 动态子空间, 小样本数据, 正交投影, 图像分类, 残差神经网络

Abstract:

The existing few-shot image classification algorithms based on metric learning have a low precision of image categorization and weak generalization performance.A few-shot image classification algorithm by dynamic subspace is proposed in this paper.First,a residual neural network is used to extract few-shot image features.The dynamically orthogonalized projection subspaces representing image categories are generated with decomposed image features of various categorizations so as to enhance the difference of features among categories in orthogonalized projection subspaces.Second,a dynamic subspace classifier based on few-shot learning is constructed by fusing the subspace loss function and the cross-entropy loss function so as to enhance the similarity of samples in the same category.The inter-class distance of the subspace is dynamically updated with the change of sampling amount and sample similarity.Finally,the feature vector of the target image is input into the dynamic subspace classifier,and the Euclidean distance square and the soft max function are used to calculate the category probability of the target feature and predict its category.Performance testing is performed on the few-shot data sets such as mini-ImageNet,CIFAR-100 and Pascal VOC2007.The proposed algorithm is superior to the current mainstream few-shot image classification algorithm,and the average classification precision of the proposed algorithm is 2.3% higher than that of the current DSN with good performance under 5-way 5-shot.Experiments show that the proposed algorithm has a strong generalization performance and an anti-interference ability.

Key words: dynamic subspace, few-shot data, orthogonal projection, image classification, residual network

中图分类号: 

  • TP391