[1] |
刘颖, 雷研博, 范九伦, 等. 基于小样本学习的图像分类技术综述[J]. 自动化学报, 2021, 47(2):297-315.
|
|
LIU Ying, LEI Yanbo, FAN Jiulun, et al. Survey on Image Classification Technology Based on Small Sample Learning[J]. Acta Automatica Sinica, 2021, 47(2):297-315
|
[2] |
赵凯琳, 靳小龙, 王元卓. 小样本学习研究综述[J]. 软件学报, 2021, 32(2):349-369.
|
|
ZHAO Kailin, JIN Xiaolon, WANG Yuanzhuo. Survey on Few-shot Learning[J]. Journal of Software, 2021, 32(2):349-369.
|
[3] |
宋闯, 赵佳佳, 王康, 等. 面向智能感知的小样本学习研究综述[J]. 航空学报, 2020, 41(z1):12-25.
|
|
SONG Chuang, ZHAO Jiajia, WANG Kang, et al. A Survey of Few Shot Learning Based on Intelligent Perception[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(z1):12-25.
|
[4] |
VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching Networks for One Shot Learning[J]. Advances in Neural Information Processing Systems, 2016, 29:3630-3638.
|
[5] |
KOCH G, ZEMEL R, SALAKHUTDINOV R. Siamese Neural Networks for One-Shot Image Recognition[C]// Proceedings of the ICML Deep Learning Workshop. Piscataway: IEEE, 2015:1-30.
|
[6] |
SNELL J, SWERSKY K, ZEMEL R S. Prototypical Networks for Few-Shot Learning[J]. Advances in Neural Information Processing Systems, 2017, 30:197-209.
|
[7] |
LI H, EIGEN D, DODGE S, et al. Finding Task-Relevant Features for Few-Shot Learning by Category Traversal[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:1-10.
|
[8] |
PEREZ-RUA J M, ZHU X, HOSPEDALES T, et al. Incremental Few-Shot Object Detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020:13846-13855.
|
[9] |
SIMON C, KONIUSZ P, NOCK R, et al. Adaptive Subspaces for Few-Shot Learning[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020:4136-4145.
|
[10] |
LIANG X, WANG X, ZHEN L, et al. Soft-Margin Softmax for Deep Classification[C]// Proceedings of the International Conference on Neural Information Processing. Piscataway: IEEE, 2017:413-421.
|
[11] |
JIANG Q, YAN X. Parallel PCA-KPCA for Nonlinear Process Monitoring[J]. Control Engineering Practice, 2018, 80:17-25.
doi: 10.1016/j.conengprac.2018.07.012
|
[12] |
HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:770-778.
|
[13] |
KANG X, XIANG X, LI S, et al. PCA-Based Edge-Preserving Features for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12):7140-7151.
doi: 10.1109/TGRS.2017.2743102
|
[14] |
HARANDI M, HARTLEY R, SHEN C, et al. Extrinsic Methods for Coding and Dictionary Learning on Grassmann Manifolds[J]. International Journal of Computer Vision, 2015, 114(2):113-136.
doi: 10.1007/s11263-015-0833-x
|
[15] |
HE K, GIRSHICK R, DOLLÁR P. Rethinking ImageNet Pre-Training[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019:4918-4927.
|
[16] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet Classification with Deep Convolutional Neural Networks[C]// Proceedings of the Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2012:1097-1105.
|
[17] |
EVERINGHAM M, ESLAMI S M A, VAN GOOL L, et al. The Pascal Visual Object Classes Challenge:A Retrospective[J]. International Journal of Computer Vision, 2015, 111(1):98-136.
doi: 10.1007/s11263-014-0733-5
|
[18] |
CHERRY J M, ADLER C, BALL C A. SGD:Saccharomyces Genome Database[J]. Nucleic Acids Research, 1998, 26(1):73-79.
doi: 10.1093/nar/26.1.73
|
[19] |
FINN C, ABBEEL P, LEVINE S. Model-Agnostic Meta-learning for Fast Adaptation of Deep Networks[C]// Proceedings of the International Conference on Machine Learning. Sydney: ACM, 2017:1126-1135.
|
[20] |
MUNKHDALAI T, YU H. Meta Networks[C]// Proceedings of the International Conference on Machine Learning. New York: ACM, 2017:2554-2563.
|
[21] |
KARLINSKY L, SHTOK J, HARARY S, et al. RepMet:Representative-Based Metric Learning for Classification and Few-Shot Object Detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:5197-5206.
|
[22] |
GIDARIS S, KOMODAKIS N. Dynamic Few-Shot Visual Learning Without Forgetting[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:4367-4375.
|
[23] |
LEE K, MAJI S, RAVICHANDRAN A, et al. Meta-Learning with Differentiable Convex Optimization[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:10657-10665.
|