西安电子科技大学学报 ›› 2022, Vol. 49 ›› Issue (5): 175-180.doi: 10.19665/j.issn1001-2400.2022.05.020

• 计算机科学与技术 & 人工智能 • 上一篇    下一篇

递进式空洞残差深度双目立体匹配网络

刘侍刚1,2(),张同1,2(),杨建功1,2(),葛宝2,3()   

  1. 1.陕西师范大学 现代教学技术教育部重点实验室,陕西 西安 710062
    2.陕西师范大学 计算机科学学院,陕西 西安 710119
    3.陕西师范大学 物理学与信息技术学院,陕西 西安 710119
  • 收稿日期:2021-05-19 出版日期:2022-10-20 发布日期:2022-11-17
  • 作者简介:刘侍刚(1973—),男,教授,E-mail:shgliu@snnu.edu.cn;|张 同(1995—),男,陕西师范大学硕士研究生,E-mail:tzhang_187@163.com;|杨建功(1974—),男,讲师,E-mail:yangjiangong@snnu.edu.cn;|葛 宝(1979—),男,教授,E-mail:bob_ge@snnu.edu.cn
  • 基金资助:
    陕西省自然科学基础研究计划(2018JM6050);科技成果转移与推广计划(2019CGXNG-019)

Progressive dialtion residual network for deep binocular stereo matching

LIU Shigang1,2(),ZHANG Tong1,2(),YANG Jiangong1,2(),GE Bao2,3()   

  1. 1. Key Laboratory of Modern Teaching Technology,Ministry of Education,Shaanxi Normal University,Xi’an 710062,China
    2. School of Computer Science,Shaanxi Normal University,Xi’an 710119,China
    3. School of Physics and Information Technology,Shaanxi Normal University,Xi’an 710119,China
  • Received:2021-05-19 Online:2022-10-20 Published:2022-11-17

摘要:

为了实现轻量化高精度的双目立体匹配网络,提出了一种递进式空洞残差深度双目立体匹配网络——PDR_Net。在特征提取网络模块上提出了递进式的空洞残差网络结构,利用空洞卷积网络代替池化等降采样方式获取图像的多尺度特征信息,解决了利用池化等降采样方式进行尺度变换带来的图像特征信息损失的问题;同时引入残差网络弥补了空洞卷积网络自身特点带来的图像特征信息丢失的缺点,各尺度分支之间采用递进式的级联方式进行特征信息融合,促进了图像的各尺度特征信息之间的融合,既降低了网络的复杂度,也保留了更多的图像特征信息;最后,在三维卷积神经网络模块中采用堆叠的沙漏型编码解码网络结构,通过跳跃式连接使得网络能够更好地结合特征图的上下文信息,并在该模块中引入通道注意力机制模型,增强了网络对不同通道中各视差下特征信息之间的聚合学习能力,加深了特征点在不同视差条件下的联系。PDR_Net网络与现有网络相比,具有参数量少、速度快、精度高等优点。

关键词: 立体匹配, 递进式神经网络, 残差网络, 通道注意力机制

Abstract:

To realize a lightweight and high precision binocular stereo matching network,we propose a progressive dilated residual depth binocular stereo matching network:PDR_Net.In the feature extraction network module,a progressive dilated residual network structure is proposed.The dilated convolution network replaces the pooling down-sampling method to obtain the multi-scale feature information of the image,which can reduce image feature information loss caused by scale transformation in pooling down-sampling.At the same time,the residual network is introduced to alleviate the loss of image feature information from the characteristics of the dilated convolution network.The progressive cascade method is used to fuse the feature information between the branches of each scale,which promotes the fusion of the feature information from each image scale,namely,the strategy can reduce the network complexity and retain more image features.Finally,in the 3D convolutional network module,the stacked sand drain coding and decoding network structure is adopted,and the feature map can be effectively combined by the jump connection.The channel attention mechanism model is introduced,which enhances the aggregation learning ability of the network between the feature information of different disparities from different channels,and deepens the connection of the feature points from different disparities.Compared with the existing network,our proposed PDR_Net network has the advantages of less parameters,faster speed and higher accuracy.

Key words: stereo matching, progressive network, residual network, channel attention mechanism

中图分类号: 

  • TP391.41