西安电子科技大学学报 ›› 2022, Vol. 49 ›› Issue (5): 181-188.doi: 10.19665/j.issn1001-2400.2022.05.021

• 计算机科学与技术 & 人工智能 • 上一篇    下一篇

融合自注意力机制与CNN-BiGRU的事件检测

王侃1(),王孟洋2(),刘鑫1(),田国强3(),李川3(),刘伟2()   

  1. 1.中国电子科技集团公司第十研究所,四川 成都 610036
    2.西安电子科技大学 通信工程学院,陕西 西安 710071
    3.西安邮电大学 计算机学院,陕西 西安 710121
  • 收稿日期:2022-03-01 出版日期:2022-10-20 发布日期:2022-11-17
  • 通讯作者: 王孟洋(1998—),男,西安电子科技大学硕士研究生,E-mail:mywang_8@stu.xidian.edu.cn
  • 作者简介:王 侃(1986—),男,高级工程师,博士,E-mail:306616278@qq.com;刘 鑫(1990—),男,高级工程师,博士,E-mail:xinliu9002@163.com;田国强(1997—),男,西安邮电大学硕士研究生,E-mail:tgq_123@stu.xupt.edu.cn;李 川(1977—),女,副教授,博士,E-mail:lichuan@xupt.edu.cn;刘 伟(1977—),男,教授,博士,E-mail:liuweixd@mail.xidian.edu.cn
  • 基金资助:
    中电天奥有限公司创新理论技术群基金(2020JSQ020302);国家自然科学基金面上项目(61871452)

Event detection by combining self-attention and CNN-BiGRU

WANG Kan1(),WANG Mengyang2(),LIU Xin1(),TIAN Guoqiang3(),LI Chuan3(),LIU Wei2()   

  1. 1. The 10th Research Institute of China Electronics Technology Group Corporation,Chengdu 610036,China
    2. School of Telecommunications Engineering,Xidian University,Xi’an 710071,China
    3. School of Computer Science and Technology,Xi’an University of Posts and Telecommunications,Xi’an 710121,China
  • Received:2022-03-01 Online:2022-10-20 Published:2022-11-17

摘要:

基于卷积神经网络和循环神经网络的事件检测已得到广泛研究。然而卷积神经网络只能考虑卷积窗口内的局部信息,忽略了词语的上下文联系。循环神经网络存在梯度消失和短期记忆的问题,且其变体门控循环单元无法得到每个词语的特征。为此,提出一种基于自注意力机制与卷积双向门控循环单元模型的事件检测方法。该模型将词向量和位置向量作为输入,不仅能够通过卷积操作提取不同粒度的词汇级特征,通过双向门控循环单元提取句子级特征,而且通过自注意力机制考虑全局信息,关注对事件检测更重要的特征。将提取的词汇级特征和句子级特征拼接作为联合特征,通过softmax分类器进行候选词分类,从而完成事件检测任务。实验结果显示,在ACE2005英文语料上,事件检测中触发词识别和分类的F值分别达到78.9%和76.0%,优于基线事件检测方法的结果,且模型表现出更好的收敛性。实验结果表明,所提出的基于自注意力机制与卷积双向门控循环单元模型有良好文本特征提取能力,提升了事件检测的性能。

关键词: 事件检测, 信息抽取, 卷积神经网络, 双向门控循环单元, 自注意力机制

Abstract:

Event detection methods based on convolutional neural networks and recurrent neural networks have been widely investigated.However,convolutional neural networks only consider local information within the convolution window,ignoring the context of words.Recurrent neural networks have the problem of vanishing gradient and short-term memory,and their variant gated recurrent units cannot get the features of each word.Therefore,in this paper,an event detection method based on self-attention and convolutional bidirectional gated recurrent units model is proposed,which takes both word vectors and position vectors as inputs.It can not only extract vocabulary level features with different granularities by convolutional neural network and sentence level features by bidirectional gated recurrent units,but also consider global information and pay attention to more important features for event detection by self-attention.The extracted lexical-level features and sentence-level features are combined as the joint features,and the candidate words are classified by the softmax classifier to complete the event detection task.Experimental results show that the F scores of trigger words recognition and classification reach 78.9% and 76.0% respectively on the ACE2005 English corpus,which are better than the results of benchmark methods.Furthermore,the model shows great convergence.It is shown that the proposed model based on self-attention and convolutional bidirectional gated recurrent units possesses good ability of text feature extraction and improves the performance of event detection.

Key words: event detection, information extraction, convolutional neural networks, bidirectional gated recurrent unit, self-attention mechanism

中图分类号: 

  • TP18