[1] |
YOUS, ZHU H, LI M, et al. A Review of Visual Trackers and Analysis of Its Application to Mobile Robot[EB/OL].[2021-10-02].arXiv:1910.09761,2019.
|
[2] |
成磊, 王玥, 田春娜. 一种添加残差注意力机制的视觉目标跟踪算法[J]. 西安电子科技大学学报, 2020, 47(6):148-157.
|
|
CHENG Lei, WANG Yue, TIAN Chunna. Residual Attention Mechanism for Visual Tracking[J]. Journal of Xidian University, 2020, 47(6):148-157.
|
[3] |
HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-Speed Tracking with Kernelized Correlation Filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):583-596.
doi: 10.1109/TPAMI.2014.2345390
pmid: 26353263
|
[4] |
BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-Convolutional Siamese Networks for Object Tracking[C]// Proceedings of European Conference on Computer Vision Workshops.Heidelberg:Springer, 2016:850-865.
|
[5] |
LI B, WU W, WANG Q, et al. SiamRPN++:Evolution of Siamese Visual Tracking with Very Deep Networks[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2019:4282-4291.
|
[6] |
易翔, 王炳健. 视觉显著性指导的红外与可见光图像融合算法[J]. 西安电子科技大学学报, 2019, 46(1):27-32.
|
|
YI Xiang, WANG Bingjian. Fusion of Infrared and Visual Images Guided by Visual Saliency[J]. Journal of Xidian University, 2019, 46(1):27-32.
|
[7] |
ZHANG X, YE P, LEUNG H, et al. Object Fusion Tracking Based on Visible and Infrared Images:a Comprehensive Review[J]. Information Fusion, 2020, 63:166-187.
doi: 10.1016/j.inffus.2020.05.002
|
[8] |
YUN X, JING Z, XIAO G, et al. A Compressive Tracking Based on Time-Space Kalman Fusion Model[J]. Science China-Information Sciences, 2016, 59(1):1-15.
|
[9] |
XIAO G, YUN X, WU J. A New Tracking Approach for Visible and Infrared Sequences Based on Tracking-Before-Fusion[J]. International Journal of Dynamics and Control, 2016, 4(1):40-51.
doi: 10.1007/s40435-014-0115-4
|
[10] |
ZHAI S, SHAO P, LIANG X, et al. Fast RGB-T Tracking via Cross-Modal Correlation Filters[J]. Neurocomputing, 2019, 334:172-181.
doi: 10.1016/j.neucom.2019.01.022
|
[11] |
YUN X, SUN Y, YANG X, et al. Discriminative Fusion Correlation Learning for Visible and Infrared Tracking[J]. Mathematical Problems in Engineering, 2019, 2019:1-11.
|
[12] |
熊跃军, 张海涛, 邓黠. RGBT双模态加权相关滤波跟踪算法[J]. 信号处理, 2020, 36(9):1590-1597.
|
|
XIONG Yuejun, ZHANG Haitao, DENG Xia. RGBT Dual-Modal Tracking with Weighted Discriminative Correlation Filters[J]. Journal of Singal Processing, 2020, 36(9):1590-1597.
|
[13] |
宋建锋, 苗启广, 王崇晓, 等. 注意力机制的多尺度单目标跟踪算法[J]. 西安电子科技大学学报, 2021, 48(5):110-116.
|
|
SONG Jianfeng, MIAO Qiguang, WANG Chongxiao, et al. Multi-Scale Single Object Tracking Based on the Attention Mechanism[J]. Journal of Xidian University, 2021, 48(5):110-116.
|
[14] |
XU N, XIAO G, ZHANG X, et al. Relative Object Tracking Agorithm Based on Convolutional Neural Network for Visible and Infrared Video Sequences[C/OL].[2021-10-03]. https://xueshu.baidu.com/usercenter/paper/show?paperid=1c200e5061310vw04u680cb0y2513125&site.
|
[15] |
LI C, LU A, ZHENG A, et al. Multi-Adapter RGBT Tracking[C]// Proceedings of the 2019 IEEE International Conference on Computer Vision Workshop.Piscataway:IEEE, 2019:2262-2270.
|
[16] |
ZHU Y, LI C, LUO B, et al. Dense Feature Aggregation and Pruning for RGBT Tracking[C]// ACM Multimedia Conference. New York: ACM, 2019:465-472.
|
[17] |
LU A, QIAN C, LI C, et al. Duality-Gated Mutual Condition Network for RGBT Tracking[EB/OL].[2021-09-28].arXiv:2011.07188,2020.
|
[18] |
NAM H, HAN B. Learning Multi-Domain Convolutional Neural Networks for Visual Tracking[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2016:4293-4302.
|
[19] |
CHEN Z, ZHONG B, LI G, et al. Siamese Box Adaptive Network for Visual Tracking[C]// Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2020:6667-6676.
|
[20] |
ZHANG X, YE P, QIAO D, et al. Object Fusion Tracking Based on Visible and Infrared Images Using Fully Convolutional Siamese Networks[C/OL].[2021-09-30].Doi:10.23919/FUSION43075.2019.9011253.
|
[21] |
ZHANG X, YE P, PENG S, et al. DSiamMFT:An RGB-T Fusion Tracking Method via Dynamic Siamese Networks Using Multi-Layer Feature Fusion[J]. Signal Processing Image Communication, 2020, 84:115756.
|
[22] |
申亚丽. 基于特征融合的RGBT双模态孪生跟踪网络[J]. 红外与激光工程, 2021, 50(3):20200459.
|
|
SHEN Yali. RGBT Dual-Modal Siamese Tracking Network with Feature Fusion[J]. Infrared And Laser Engineering, 2021, 50(3):20200459.
|
[23] |
HU J, SHEN L, SUN G. Squeeze-and-Excitation Networks[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2018:7132-7141.
|
[24] |
LIU Q, LU X, HE Z, et al. Deep Convolutional Neural Networks for Thermal Infrared Object Tracking[J]. Knowledge-Based Systems, 2017, 134:189-198.
doi: 10.1016/j.knosys.2017.07.032
|
[25] |
LI X, LIU Q, FAN N, et al. Hierarchical Spatial-Aware Siamese Network for Thermal Infrared Object Tracking[J]. Knowledge-Based Systems, 2019, 166:71-81.
doi: 10.1016/j.knosys.2018.12.011
|
[26] |
ZHU Z, WANG Q, LI B, et al. Distractor-Aware Siamese Networks for Visual Object Tracking[C/OL].[2021-10-04]. https://paperswithcode.com/paper/distractor-aware-siamese-networks-for-visual.
|
[27] |
DANELLJAN M, GOUTAM B G, KHAN F S, et al. ATOM:Accurate Tracking by Overlap Maximization[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2019:4660-4669.
|
[28] |
TROTTIER L, GIGUERE P, CHAIB-DRAA B. Parametric Exponential Linear Unit for Deep Convolutional Neural Networks[C/OL].[2021-10-10].DOI:10.48550/arXiv.1605.09332.
doi: 10.48550/arXiv.1605.09332
|
[29] |
BHAT G, JOHNANDER J, DANELLJAN M, et al. Unveiling the Power of Deep Tracking[EB/OL].[2021-10-05].arXiv:1804.06833v1.
|
[30] |
LI C, LIANG X, LU Y, et al. RGB-T Object Tracking:Benchmark and Baseline[J]. Pattern Recognition, 2019, 96(12):106977.
|
[31] |
LI C, CHENG H, HU S, et al. Learning Collaborative Sparse Representation for Grayscale-Thermal Tracking[J]. IEEE Transactions on Image Processing, 2016, 25(12):5743-5756.
doi: 10.1109/TIP.2016.2614135
pmid: 28114068
|
[32] |
ZHANG H, ZHANG L, ZHOU L, et al. Object Tracking in RGB-T Videos Using Modal-Aware Attention Network and Competitive Learning[J]. Sensors, 2020, 20(2):393.
doi: 10.3390/s20020393
|
[33] |
YANG R, ZHU Y, WANG X, et al. Learning Target-Oriented Dual Attention for Robust RGB-T Tracking[C]// Proceedings of 2019 IEEE International Conference on Image Processing.Piscataway:IEEE, 2019:3975-3979.
|
[34] |
LI C, ZHAO N, LU Y, et al. Weighted Sparse Representation Regularized Graph Learning for RGB-T Object Tracking[C]// ACM International Conference on Multimedia. New York: ACM, 2017:1856-1864.
|
[35] |
LI C, ZHU C, HUANG Y, et al. Cross-Modal Ranking with Soft Cnsistency and Nisy Lbels for Rbust RGB-T Tacking[C/OL].[2021-10-06]. https://paperswithcode.com/paper/cross-modal-ranking-with-soft-consistency-and.
|
[36] |
ZHANG Z, PENG H. Deeper and Wder Samese Ntworks for Ral-time Vsual Tacking[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2019:4591-4600.
|