西安电子科技大学学报 ›› 2022, Vol. 49 ›› Issue (6): 95-102.doi: 10.19665/j.issn1001-2400.2022.06.012

• 计算机科学与技术 & 人工智能 • 上一篇    下一篇

特征融合实现脑电信号情感分析

杨利英(),孟天昊(),张清杨(),晁思()   

  1. 西安电子科技大学 计算机科学与技术学院,陕西 西安 710071
  • 收稿日期:2021-12-08 出版日期:2022-12-20 发布日期:2023-02-09
  • 作者简介:杨利英(1974—),女,副教授,E-mail:yangliying1208@163.com|孟天昊(1996—),男,西安电子科技大学硕士研究生,E-mail:2238234901@qq.com|张清杨(1997—),女,西安电子科技大学硕士研究生,E-mail:zhqingyang@foxmail.com|晁 思(1998—),女,西安电子科技大学硕士研究生,E-mail:schaoz@foxmail.com
  • 基金资助:
    国家自然科学基金面上项目(61974109);国家自然科学基金联合基金(U1709218)

Implementation of EEG emotion analysis via feature fusion

YANG Liying(),MENG Tianhao(),ZHANG Qingyang(),CHAO Si()   

  1. School of Computer Science and Technology,Xidian University,Xi’an 710071,China
  • Received:2021-12-08 Online:2022-12-20 Published:2023-02-09

摘要:

由于脑电信号具有非平稳、微弱、频段差异大的特点,在处理过程中难以获得较好的识别精度。为了提高脑电情感分析的性能,从特征提取和特征选择两个方面进行了探讨。在特征提取方面,在功率谱强度的基础上采用改进的平衡功率谱强度特征;在特征选择方面,提出一种特征融合算法,充分利用Relief和mRMR两种方法各自的优势,在提高识别性能的同时大幅度地降低了特征维度。采用支持向量机分类算法,在DEAP数据集上进行了实验。结果表明,相比于功率谱强度,平衡功率谱强度的分类准确率平均提高了6.22%,特征融合算法选择的特征相比于基线提高了3.90分,相比于Relief提高了1.84分,相比于 mRMR提高了2.05分。基于平衡功率谱强度的特征融合算法,不仅其整体性能提升了,且其平均识别准确率在Valence维度上达到88.89%,在Arousal维度上达到87.73%,同时平均特征维度从160维减少至67维。

关键词: 情感识别, 情感计算, 脑电信号, 特征提取, 融合特征, 特征选择

Abstract:

Since the EEG signal has the characteristics of non-stationary,weak,and large frequency difference,it is difficult to obtain a higher recognition accuracy.In order to improve the performance of EEG sentiment analysis,this paper conducts research from two aspects:feature extraction and feature selection.In terms of feature extraction,based on the power spectrum intensity,the balanced power spectrum intensity feature (BPSI) is adopted.For feature selection,a feature fusion algorithm FFS is proposed,which combines the Relief and mRMR to reduce the feature dimension and improve the recognition performance.This paper uses the SVM classification algorithm,and carries out experiments on DEAP data.Experimental results show that,compared with the power spectrum intensity,the classification accuracy of the BPSI feature is increased by 6.22% on average.The performance is increased by 3.9 points with features selected by the FFS compared with the baseline,by 1.84 points compared with the Relief,and by 2.05 points compared with the mRMR.The average accuracy of the emotion recognition algorithm based on the BPSI and FFS reaches 88.89% in Valence dimension and 87.73% in Arousal dimension,and meanwhile the average feature dimension is reduced from 160 to 67.

Key words: emotion recognition, affective computing, electro encephalo gram signal, feature extraction, feature fusion, feature selection

中图分类号: 

  • TP181