[1] |
BHAT S, KOUNDAL D. Multi-Focus Image Fusion Techniques:A Survey[J]. Artificial Intelligence Review, 2021, 54(8):5735-5787.
doi: 10.1007/s10462-021-09961-7
|
[2] |
申铉京, 张雪峰, 王玉, 等. 像素级卷积神经网络多聚焦图像融合算法[J]. 吉林大学学报(工学版), 2022, 52(8):1857-1864.
|
|
SHEN Xuanjing, ZHANG Xuefeng, WANG Yu, et al. Pixel-Level Convolutional Neural Network Multi-Focus Image Fusion Algorithm[J]. Journal of Jilin University ( Engineering Edition), 2022, 52(8):1857-1864.
|
[3] |
杨晓莉, 蔺素珍. 一种注意力机制的多波段图像特征级融合方法[J]. 西安电子科技大学学报, 2020, 47(1):120-127.
|
|
YANG Xiaoli, LIN Suzhen. A Multi-Band Image Feature-Level Fusion Method with Attention Mechanism[J]. Journal of Xidian University, 2020, 47(1):120-127.
|
[4] |
LIU Y, WANG L, CHENG J, et al. Multi-Focus Image Fusion:A Survey of the State of the Art[J]. Information Fusion, 2020, 64:71-91.
doi: 10.1016/j.inffus.2020.06.013
|
[5] |
LIU Y, CHEN X, PENG H, et al. Multi-Focus Image Fusion with a Deep Convolutional Neural Network[J]. Information Fusion, 2017, 36:191-207.
doi: 10.1016/j.inffus.2016.12.001
|
[6] |
陈清江, 汪泽百, 柴昱洲. 改进VGG网络的多聚焦图像的融合方法[J]. 应用光学, 2020, 41(3):500-507.
|
|
CHEN Qingjiang, WANG Zebai, CHAI Yuzhou. Improved VGG Network Multi-Focus Image Fusion Method[J]. Application Optics, 2020, 41(3):500-507.
|
[7] |
陈清江, 李毅, 柴昱洲. 一种基于深度学习的多聚焦图像融合算法[J]. 激光与光电子学进展, 2018, 55(7):246-254.
|
|
CHEN Qingjiang, LI Yi, CHAI Yuzhou. A Multifocus Image Fusion Algorithm Based on Deep Learning[J]. Progress in Laser and Optoelectronics, 2018, 55(7):246-254.
|
[8] |
RAM P K, SAI V, VENKATESH B R. Deepfuse:A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pairs[C]// Proceedings of the IEEE International Conference on Computer Vision.Piscataway:IEEE, 2017:4714-4722.
|
[9] |
MA B, YIN X, WU D, et al. End-To-End Learning for Simultaneously Generating Decision Map and Multi-Focus Image Fusion Result[J]. Neurocomputing, 2022, 470:204-216.
doi: 10.1016/j.neucom.2021.10.115
|
[10] |
LI H, WU X J. DenseFuse:A Fusion Approach to Infrared and Visible Images[J]. IEEE Transactions on Image Processing, 2018, 28(5):2614-2623.
doi: 10.1109/TIP.2018.2887342
|
[11] |
HOU R, ZHOU D, NIE R, et al. VIF-Net:An Unsupervised Framework for Infrared and Visible Image Fusion[J]. IEEE Transactions on Computational Imaging, 2020, 6:640-651.
doi: 10.1109/TCI.2020.2965304
|
[12] |
MA B, ZHU Y, YIN X, et al. SESF-Fuse:An Unsupervised Deep Model for Multi-Focus Image Fusion[J]. Neural Computing and Applications, 2021, 33(11):5793-5804.
doi: 10.1007/s00521-020-05358-9
|
[13] |
XU H, MA J, LE Z, et al. Fusiondn:A Unified Densely Connected Network for Image Fusion[C]// Proceedings of the AAAI Conference on Artificial Intelligence. PaloAlto:AAAI, 2020:12484-12491.
|
[14] |
XU H, MA J, JIANG J, et al. U2Fusion:A Unified Unsupervised Image Fusion Network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020: 44(1):502-518.
doi: 10.1109/TPAMI.2020.3012548
|
[15] |
高德勇, 康自兵, 王松, 等. 利用卷积块注意力机制识别人体动作的方法[J]. 西安电子科技大学学报, 2022, 49(4):144-155.
|
|
GAO Deyong, KANG Zibing, WANG Song, et al. A Method for Recognizing Human Motion Using Convolution Block Attention Mechanism[J]. Journal of Xidian University, 2022, 49(4):144-155.
|
[16] |
GE Z, LIU S, WANG F, et al. Yolox:Exceeding Yolo Series in 2021(2021)[J/OL].[2021-08-06]. https://arxic.ory/pdf/2017.08430.pdf.
|
[17] |
ZHAO H, GALLO O, FROSIO I, et al. Loss Functions for Image Restoration with Neural Networks[J]. IEEE Transactions on Computational Imaging, 2016, 3(1):47-57.
doi: 10.1109/TCI.2016.2644865
|
[18] |
李郁峰, 陈念年, 张佳成. 一种快速高灵敏度聚焦评价函数[J]. 计算机应用研究, 2010, 27(4):1534-1536.
|
|
LI Yufeng, CHEN Niannian, ZHANG Jiacheng. A Fast and High Sensitivity Focusing Evaluation Function[J]. Computer Application Research, 2010, 27(4):1534-1536.
|
[19] |
YANG Y, YANG M, HUANG S, et al. Robust Sparse Representation Combined with Adaptive PCNN for Multifocus Image Fusion[J]. IEEE Access, 2018, 6:20138-20151.
doi: 10.1109/ACCESS.2018.2822688
|
[20] |
WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale Structural Similarity for Image Quality Assessment[C]// The Thrity-Seventh Asilomar Conference on Signals,Systems & Computers 2003.Piscataway:IEEE, 2003:1398-1402.
|
[21] |
SETIADI D R I M. PSNR vs SSIM:Imperceptibility Quality Assessment for image Steganography[J]. Multimedia Tools and Applications, 2021, 80(6):8423-8444.
doi: 10.1007/s11042-020-10035-z
|
[22] |
杨艳春, 李娇, 王阳萍. 图像融合质量评价方法研究综述[J]. 计算机科学与探索, 2018, 12(7):1021-1035.
doi: 10.3778/j.issn.1673-9418.1710001
|
|
YANG Yanchun, LI Jiao, WANG Yangping. Review of Image Fusion Quality Evaluation Methods[J]. Computer Science and Exploration, 2018, 12(7):1021-1035.
doi: 10.3778/j.issn.1673-9418.1710001
|
[23] |
LI X, ZHANG X, DING M. A Sum-Modified-Laplacian and Sparse Representation Based Multimodal Medical Image Fusion in Laplacian Pyramid Domain[J]. Medical & Biological Engineering & Computing, 2019, 57(10):2265-2275.
|
[24] |
MA B, YIN X, WU D, et al. End-To-End Learning for Simultaneously Generating Decision Map and Multi-Focus Image Fusion Result[J]. Neurocomputing, 2022, 470:204-216.
doi: 10.1016/j.neucom.2021.10.115
|
[25] |
MA X, HU S, LIU S, et al. Multi-Focus Image Fusion Based on Joint Sparse Representation and Optimum Theory[J]. Signal Processing:Image Communication, 2019, 78:125-134.
doi: 10.1016/j.image.2019.06.002
|
[26] |
DESALE R P, VERMA S V. Study and Analysis of PCA,DCT & DWT Based Image Fusion Techniques[C]// 2013 International Conference on Signal Processing,Image Processing & Pattern Recognition.Piscataway:IEEE, 2013:66-69.
|