[1] |
ROBERT B, JEROME A. RollingElement Bearing Diagnostics-A tutorial[J]. Mechanical Systems & Signal Processing, 2011, 25(2):485-520.
|
[2] |
SMITH W A, RANDALL ROBERT R B. RollingElement Bearing Diagnostics Using the Case Western Reserve University Data:A Benchmark Study[J]. Mechanical Systems & Signal Processing, 2015, 64/65:100-131.
|
[3] |
ANTONI J, BONNARDOT F, RAAD A, et al. Cyclostationary Modelling of Rotating Machine Vibration Signals[J]. Mechanical Systems & Signal Processing, 2004, 18(6):1285-1314.
|
[4] |
王国彪, 何正嘉, 陈雪峰, 等. 机械故障诊断基础研究“何去何从”[J]. 机械工程学报, 2013, 49(1):63-72.
|
|
WANG Guobiao, HE Zhengjia, CHEN Xuefeng, et al. Basic Research on Machinery Fault Diagnosis—What is the Prescription[J]. Journal of Mechanical Engineering, 2013, 49(1):63-72.
|
[5] |
贺王鹏, 孙伟, 苏博, 等. 机械故障诊断的稀疏特征提取方法[J]. 西安电子科技大学学报, 2018, 45(2):154-159.
|
|
HE Wangpeng, SUN Wei, SU Bo, et al. Sparse Feature Extraction Technique and Its Applications to Machinery Fault Diagnosis[J]. Journal of Xidian University, 2018, 45(2):154-159.
|
[6] |
陈是扦, 彭志科, 周鹏. 信号分解及其在机械故障诊断中的应用研究综述[J]. 机械工程学报, 2020, 56(17):91-107.
doi: 10.3901/JME.2020.17.091
|
|
CHEN Shiqian, PENG Zhike, ZHOU Peng. Review of Signal Decomposition Theory and Its Applications in Machine Fault Diagnosis[J]. Journal of Mechanical Engineering, 2020, 56(17):91-107.
doi: 10.3901/JME.2020.17.091
|
[7] |
万志国, 贺王鹏, 廖楠楠, 等. 齿根裂纹与齿面剥落故障的振动响应机理研究[J]. 西安电子科技大学学报, 2021, 48(6):131-137.
|
|
WAN Zhiguo, HE Wangpeng, LIAO Nannan, et al. Study on the Vibration Response Mechanism of Gear Root Crack and Spalling[J]. Journal of Xidian University[J], 2021, 48(6):131-137.
|
[8] |
WANG Y X, LIANG M. Identification ofMultiple Transient Faults Based on the Adaptive Spectral Kurtosis Method[J]. Journal of Sound and Vibration, 2011, 331:470-486.
doi: 10.1016/j.jsv.2011.08.029
|
[9] |
姚德臣, 杨建伟, 程晓卿, 等. 基于多尺度本征模态排列熵和SA-SVM的轴承故障诊断研究[J]. 机械工程学报, 2018, 54(9):168-176.
doi: 10.3901/JME.2018.09.168
|
|
YAO Dechen, YANGJianwei, CHENG Xiaoqing, et al. Railway Rolling Bearing Fault Diagnosis Based on Muti-scale IMF Permutation Entropy and SA-SVM Classifier[J]. Journal of Mechanical Engineering, 2018, 54(9):168-176.
doi: 10.3901/JME.2018.09.168
|
[10] |
程军圣, 于德介, 杨宇. 基于内禀模态奇异值分解和支持向量机的故障诊断方法[J]. 自动化学报, 2006, 32(3):476-480.
|
|
CHENG Junsheng, YU Dejie, YANG Yu. Fault Diagnosis Method Based on Intrinsic Modal Singular Value Decomposition and Support Vector Machine[J]. Acta Automatica Sinica, 2006, 32(3):476-480.
|
[11] |
高明哲, 许爱强, 唐小峰. 基于多核多分类相关向量机的模拟电路故障诊断方法[J]. 自动化学报, 2019, 45(2):203-213.
|
|
GAO Mingzhe, XU Aiqiang, TANG Xiaofeng. Analog Circuit Fault Diagnosis Method Based on Multi-core and Multiclassiflcation Relevant Vector Machine[J]. Acta Automatica Sinica, 2019, 45(2):203-213.
|
[12] |
HAN T, ZHANG L W, YIN Z J, et al. Rolling Bearing Fault Diagnosis with Combined Convolutional Neural Networks and Support Vector Machine[J/OL].[2021-12-01].DOI:10.1016/j.measurement.2021.109022.
doi: 10.1016/j.measurement.2021.109022
|
[13] |
雷亚国, 贾峰, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5):94-104.
doi: 10.3901/JME.2018.05.094
|
|
LEI Yaguo, JIA Feng, KONG Detong, et al. Opportunities and Challenges of Machinery Intelligent Fault Diagnosis in Big Data Era[J]. Journal of Mechanical Engineering, 2018, 54(5):94-104.
doi: 10.3901/JME.2018.05.094
|
[14] |
毛文涛, 田思雨, 窦智, 等. 一种基于深度迁移学习的滚动轴承早期故障在线检测方法[J]. 自动化学报, 2022, 48(1):302-314.
|
|
MAO Wentao, TIAN Siyu, DOU Zhi, et al. An Online Detection Method for Early Faults of Rolling Bearings Based on Deep Transfer Learning[J]. Acta Automatica Sinica, 2022, 48(1):302-314.
|
[15] |
张建勋, 杜党波, 司小胜, 等. 基于最后逃逸时间的随机退化设备寿命预测方法[J]. 自动化学报, 2022, 48(1):249-260.
|
|
ZHANG Jianxun, DU Dangbo, SI Xiaosheng, et al. Life Prediction Method for Stochastic Degraded Equipment Based on Last Escape Time[J]. Acta Automatica Sinica:, 2022, 48(1):249-260.
|
[16] |
沈长青, 汤盛浩, 江星星, 等. 独立自适应学习率优化深度信念网络在轴承故障诊断中的应用研究[J]. 机械工程学报, 2019, 55(7):81-88.
doi: 10.3901/JME.2019.07.081
|
|
SHENChangqing, TANG Shenghao, JIANG Xingxing, et al. Bearings Fault Diagnosis Based on Improved Deep Belief Network by Self-individual Adaptive Learning Rate[J]. Journal of Mechanical Engineering, 2019, 55(7):81-88.
doi: 10.3901/JME.2019.07.081
|
[17] |
XUE F, ZHANG W M, XUE F, et al. A Novel Intelligent Fault Diagnosis Method of Rolling Bearing Based on Two-Stream Feature Fusion Convolutional Neural Network[J/OL].[2021-12-02].DOI:10.1016/j.measurement.2021.109226.
doi: 10.1016/j.measurement.2021.109226
|
[18] |
MAO W T, CHEN J X, LIANG X H, et al. A New Online Detection Approach for Rolling Bearing Incipient Fault via Self-Adaptive Deep Feature Matching[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(2):443-456.
doi: 10.1109/TIM.2019.2903699
|
[19] |
LI X, ZHANG W, DING Q. Understanding andImproving Deep Learning-Based Rolling Bearing Fault Diagnosis with Attention Mechanism[J]. Signal Processing, 2019, 161:136-154.
doi: 10.1016/j.sigpro.2019.03.019
|
[20] |
明阳, 陈进, 董广明. 基于循环维纳滤波器和包络谱的轴承故障诊断[J]. 振动工程学报, 2010, 23(5):537-540.
|
|
MING Yang, CHENJin, DONG Guangming. Rolling bearing fault diagnosis based on cyclic Wiener filter and envelop spectrum[J]. Journal of Vibration Engineering, 2010, 23(5):537-540.
|
[21] |
张峰, 马舒啸, 石现峰. 基于循环维纳滤波的振动信号去噪算法研究[J]. 计算机技术与发展, 2014, 24(6):49-51.
|
|
ZHANG Feng, MAShuxiao, SHI Xianfeng. Research on Denoising Algorithm of Vibration Signal Based on Cricular Wiener Filtering[J]. Computer Technology and Development, 2014, 24(6):49-51.
|
[22] |
郝芳, 王宏超. 改进循环维纳滤波器算法的滚动轴承复合故障诊断[J]. 中国工程机械学报, 2018, 16(4):371-376.
|
|
HAO Fang, WANGHongchao. Fault Diagnosis of Rolling Element Bearing'compound Faults Basing on Improved Cyclic Wiener Filter Algorithm[J]. Chinese Journal of Construction Machinery, 2018, 16(4):371-376.
|
[23] |
Case Western Reserve University, Bearing Data Center, Seeded Fault Test Data[EB/OL]. http://engineering.case.edu/bearingdaacenter/. 2016.
|