[1] |
DIMITRAKOPOULOS G, DEMESTICHAS P. Intelligent Transportation Systems[J]. IEEE Vehicular Technology Magazine, 2010, 5(1):77-84.
doi: 10.1109/MVT.2009.935537
|
[2] |
VAN DER VOORT M, DOUGHERTY M, WATSON S. Combining Kohonen Maps with ARIMA Time Series Models to Forecast Traffic Flow[J]. Transportation Research Part C:Emerging Technologies, 1996, 4(5):307-318.
doi: 10.1016/S0968-090X(97)82903-8
|
[3] |
KUMAR S V, VANAJAKSHI L. Short-Term Traffic Flow Prediction Using Seasonal ARIMA Model with Limited Input Data[J]. European Transport Research Review, 2015, 7(3):1-9.
doi: 10.1007/s12544-014-0149-x
|
[4] |
SU H, ZHANG L, YU S. Short-Term Traffic Flow Prediction Based on Incremental Support Vector Regression[C]//Third International Conference on Natural Computation (ICNC 2007).Piscataway:IEEE, 2007:640-645.
|
[5] |
CSIKÓS A, VIHAROS Z J, KIS K B, et al. Traffic Speed Prediction Method for Urban Networks—an ANN Approach[C]//2015 International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS).Piscataway:IEEE, 2015:102-108.
|
[6] |
罗文慧, 董宝田, 王泽胜. 基于CNN-SVR混合深度学习模型的短时交通流预测[J]. 交通运输系统工程与信息, 2017, 17(5):68-74.
|
|
LUO Wenhui, DONG Baotian, WANG Zesheng. Short-Term Traffic Flow Prediction Based onCNN-SVR Hybrid Deep Learning Model[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(5):68-74.
|
[7] |
DAI X, FU R, ZHAO E, et al. Deep Trend 2.0:ALight-Weighted Multi-Scale Traffic Prediction Model Using Detrending[J]. Transportation Research Part C:Emerging Technologies, 2019, 103:142-157.
doi: 10.1016/j.trc.2019.03.022
|
[8] |
TIAN Y, PAN L. Predicting Short-Term Traffic Flow by Long Short-Term Memory Recurrent Neural Network[C]//2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity).Piscataway:IEEE, 2015:153-158.
|
[9] |
陆文琦, 芮一康, 冉斌, 等. 智能网联环境下基于混合深度学习的交通流预测模型[J]. 交通运输系统工程与信息, 2020, 20(3):47-53.
|
|
LU Wenqi, RUI Yikang, RAN Bin, et al. Traffic Flow Prediction Based on Hybrid Deep Learning under Connected and Automated Vehicle Environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(3):47-53.
|
[10] |
MA X, TAO Z, WANG Y, et al. Long Short-Term Memory Neural Network for Traffic Speed Prediction Using Remote Microwave Sensor Data[J]. Transportation Research Part C:Emerging Technologies, 2015, 54:187-197.
doi: 10.1016/j.trc.2015.03.014
|
[11] |
ZHENG H, LIN F, FENG X, et al. A Hybrid Deep Learning Model with Attention-Based Conv-LSTM Networks for Short-Term Traffic Flow Prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(11):6910-6920.
doi: 10.1109/TITS.2020.2997352
|
[12] |
刘小明, 田玉林, 唐少虎, 等. 基于时延特性建模的多断面短时交通流预测[J]. 交通运输系统工程与信息, 2020, 20(3):54-60.
|
|
LIU Xiaoming, TIAN Yulin, TANG Shaohu, et al. Short-Term Traffic Flow Prediction of Multi-Sections Based on Time-Delay Modeling[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(3):54-60.
|
[13] |
谷远利, 陆文琦, 李萌, 等. 基于组合深度学习的快速路车道级速度预测研究[J]. 交通运输系统工程与信息, 2019, 19(4):79-86.
|
|
GU Yuanli, LU Wenqi, LI Meng, et al. Lane-Level Traffic Speed Prediction for Expressways Based on a Combined Deep Learning Model[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(4):79-86.
|
[14] |
李桃迎, 王婷, 张羽琪. 考虑多特征的高速公路交通流预测模型[J]. 交通运输系统工程与信息, 2021, 21(3):101-111.
|
|
LI Taoying, WANG Ting, ZHANG Yuqi. Highway Traffic Flow Prediction Model with Multi-Features[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3):101-111.
|
[15] |
HOCHREITER S, SCHMIDHUBER J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735
pmid: 9377276
|
[16] |
戚艳军, 孔月萍, 王佳婧, 等. 一种LSTM与CNN相结合的步态识别方法[J]. 西安电子科技大学学报, 2021, 48(5):78-85.
|
|
QI Yanjun, KONG Yueping, WANG Jiajing, et al. Gait Recognition Method Combining LSTM and CNN[J]. Journal of Xidian University, 2021, 48(5):78-85.
|
[17] |
杨晓莉, 蔺素珍. 一种注意力机制的多波段图像特征级融合方法[J]. 西安电子科技大学学报, 2020, 47(1):120-127.
|
|
YANG Xiaoli, LIN Suzhen. Method for Multi-Band Image Feature-Level Fusion Based on the Attention Mechanism[J]. Journal of Xidian University, 2020, 47(1):120-127.
|