西安电子科技大学学报 ›› 2023, Vol. 50 ›› Issue (5): 21-31.doi: 10.19665/j.issn1001-2400.20221102

• 信息与通信工程 & 计算机科学与技术 • 上一篇    下一篇

一种室内伪卫星混合指纹定位方法

李雅宁1,2,3(),李宏生1(),蔚保国2,3()   

  1. 1.东南大学 仪器科学与工程学院微惯性仪表与先进导航技术教育部重点实验室,江苏 南京 210096
    2.中国电子科技集团公司第五十四研究所,河北 石家庄 050081
    3.卫星导航系统与装备技术国家重点实验室,河北 石家庄 050081
  • 收稿日期:2022-09-05 出版日期:2023-10-20 发布日期:2023-11-21
  • 通讯作者: 李宏生
  • 作者简介:李雅宁(1991—),女,东南大学博士研究生,E-mail:15631149037@163.com;|蔚保国(1966—),男,卫星导航系统与装备技术国家重点实验室主任,E-mail:yubg@sina.cn
  • 基金资助:
    国家重点研发计划(2021YFB3900801)

Indoor pseudolite hybrid fingerprint positioning method

LI Yaning1,2,3(),LI Hongsheng1(),YU Baoguo2,3()   

  1. 1. Ministry of Education Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology,School of Instrument Science and Engineering,Southeast University,Nanjing,Jiangsu 210096,China
    2. The 54th Research Institute of China Electronics Technology Group Corporation,Shijiazhuang 050081,China
    3. State Key Laboratory of Satellite Navigation System and Equipment Technology,Shijiazhang 050081,China
  • Received:2022-09-05 Online:2023-10-20 Published:2023-11-21
  • Contact: Hongsheng LI

摘要:

目前,复杂的室内环境与伪卫星信号的交互机制尚未得到根本解决,室内定位的稳定性、连续性和准确性仍是技术瓶颈,现有室内指纹定位方法面临指纹采集量与定位精度和定位范围成正比的限制,同时也有非实际采集不能完成定位的弊端。针对现有方法的不足,结合实际测量、数学仿真和人工神经网络的优点,提出了一种基于实际采集指纹、建模仿真指纹和人工神经网络的室内伪卫星混合指纹定位方法。首先对实际环境和信号收发端进行模型构建,其次将利用射线追踪仿真生成的模拟指纹转换后联合实测指纹共同添加到神经网络的输入中,扩展了原来单一实测指纹输入数据集的样本特征,最后利用混合指纹共同训练人工神经网络定位模型,用于在线定位。以某机场环境为例,实验证明混合指纹定位方法可以提高稀疏采集指纹区域的定位精度,均方根定位误差约为0.485 0 m,与传统指纹定位方法相比,定位误差降低了约54.7%;在没有采集指纹的区域也可以粗略完成初步定位,均方根定位误差约为1.123 7 m,突破了传统指纹定位方法的局限。

关键词: 指纹定位, 人工神经网络, 伪卫星, 射线追踪, 室内定位

Abstract:

At present,the interaction mechanism between the complex indoor environment and pseudolite signals has not been fundamentally resolved,and the stability,continuity,and accuracy of indoor positioning are still technical bottlenecks.Existing fingerprint positioning methods face the limitation that the collection workload is proportional to the positioning accuracy and positioning range,and have the disadvantage that the positioning cannot be completed without actual collection.In order to solve the above shortcomings of the existing methods,by combining the advantages of actual measurement,mathematical simulation and the artificial neural network,an indoor pseudolite hybrid fingerprint location method based on actual fingerprints,simulation fingerprints and the artificial neural network is proposed.First,the actual environment and signal transceiver are modeled.Second,both the simulated fingerprints generated by ray tracing simulation after conversion and the measured fingerprints are added to the input of the neural network,which expands the sample characteristics of the input data set of the original single measured fingerprints.Finally,the artificial neural network positioning model is jointly trained by the mixed fingerprints and then used for online positioning.By taking an airport environment as an example,it is proved that the hybrid method can improve the positioning accuracy of the sparsely collected fingerprint region,and that the root mean square error is 0.485 0 m,which is 54.7% lower than that of the traditional fingerprint positioning method.Preliminary positioning can also be completed in areas where no fingerprints are collected,and the root mean square positioning error is 1.123 7 m,which breaks through the limitations of traditional fingerprint location methods.

Key words: fingerprint positioning, ANN, pseudolite, ray tracing, indoor positioning

中图分类号: 

  • TN967.1