[1] |
GHAFIR I, PRENOSIL V. Advanced Persistent Threat Attack Detection:An Overview[J]. International Journal of Advancements in Computer Networks and Its Security, 2014, 4(4):5054.
|
[2] |
ALSHAMRANI A, MYNENI S, CHOWDHARY A, et al. A Survey on Advanced Persistent Threats:Techniques,Solutions,Challenges,and Research Opportunities[J]. IEEE Communications Surveys & Tutorials, 2019, 21(2):1851-1877.
|
[3] |
刘奇旭, 王君楠, 尹捷, 等. 对抗机器学习在网络入侵检测领域的应用[J]. 通信学报, 2021, 42(11):1-12.
doi: 10.11959/j.issn.1000-436x.2021193
|
|
LIU Qixu, WANG Junnan, YIN Jie, et al. Application of Adversarial Machine Learning in Network Intrusion Detection[J]. Journal on Communications, 2021, 42(11):1-12.
doi: 10.11959/j.issn.1000-436x.2021193
|
[4] |
SHARAFALDIN I, LASHKARI A H, GHORBANI A A. A Detailed Analysis of the Cicids2017 Data Set[C]//International Conference on Information Systems Security and Privacy. Berlin:Springer, 2018:172-188.
|
[5] |
LEEVY J L, KHOSHGOFTAAR T M. A Survey and Analysis of Intrusion Detection Models Based on CSE-CIC-IDS 2018 Big Data[J]. Journal of Big Data, 2020, 7(1):1-19.
doi: 10.1186/s40537-019-0278-0
|
[6] |
MYNENI S, CHOWDHARY A, SABUR A, et al. DAPT 2020-Constructing a Benchmark Dataset for Advanced Persistent Threats[C]//International Workshop on Deployable Machine Learning for Security Defense. Berlin:Springer, 2020:138-163.
|
[7] |
周杰英, 贺鹏飞, 邱荣发, 等. 融合随机森林和梯度提升树的入侵检测研究[J]. 软件学报, 2021, 32(10):3254-3265.
|
|
ZHOU Jieying, HE Pengfei, QIU Rongfa, et al. Research on Intrusion Detection Based on Random Forest and Gradient Boosting Tree[J]. Journal of Software, 2021, 32(10):3254-3265.
|
[8] |
张兴兰, 尹晟霖. 可变融合的随机注意力胶囊网络入侵检测模型[J]. 通信学报, 2020, 41(11):160-168.
doi: 10.11959/j.issn.1000-436x.2020220
|
|
ZHANG Xinglan, YIN Shenglin. Intrusion Detection Model of Random Attention Capsule Network Based on Variable Fusion[J]. Journal of Communication, 2020, 41(11):160-168.
doi: 10.11959/j.issn.1000-436x.2020220
|
[9] |
刘景美, 高源伯. 自适应分箱特征选择的快速网络入侵检测系统[J]. 西安电子科技大学学报, 2021, 48(1):176-182.
|
|
LIU Jingmei, GAO Yuanbo. Fast Network Instrusion Detection System Using Adaptive Binning Feature Selection[J]. Journal of Xidian University, 2021, 48(1):176-182.
|
[10] |
ALSAHEEL A, NAN Y, MA S, et al. ATLAS:A Sequence-Based Learning Approach for Attack Investigation[C]//30th USENIX Security Symposium (USENIX Security 21).Berkeley:USENIX, 2021:3005-3022.
|
[11] |
WILKENS F, ORTMANN F, HAAS S, et al. Multi-Stage Attack Detection via Kill Chain State Machines[C]//Proceedings of the 3rd Workshop on Cyber-Security Arms Race. New York: ACM, 2021:13-24.
|
[12] |
MOUSTAFA N, SLAY J. UNSW-NB15:A Comprehensive Data Set for Network Intrusion Detection Systems (UNSW-NB 15 Network Data Set)[C]//2015 Military Communications and Information Systems Conference (MilCIS).Piscataway:IEEE, 2015:1-6.
|
[13] |
DHANABAL L, SHANTHARAJAH S P. A Study on NSL-KDD Dataset for Intrusion Detection System Based on Classification Algorithms[J]. International Journal of Advanced Research in Computer and Communication Engineering, 2015, 4(6):446-452.
|
[14] |
GRIFFITH J, KONG D, CARO A, et al. Scalable Transparency Architecture for Research Collaboration (STARC)-DARPA Transparent Computing (TC) Program[R]. Raytheon BBN Technologies Corp.Cambridge United States, 2020.
|
[15] |
MILAJERDI S M, GJOMEMO R, ESHETE B, et al. Holmes:Real-Time Apt Detection through Correlation of Suspicious Information Flows[C]//2019 IEEE Symposium on Security and Privacy (SP).Piscataway:IEEE, 2019:1137-1152.
|
[16] |
HAN X, PASQUIER T, BATES A, et al. Unicorn:Runtime Provenance-Based Detector for Advanced Persistent Threats (2020)[J/OL].[2020-01-06]. https://arxiv.org/abs/2001.01525v1.
|
[17] |
LI Z, CHENG X, SUN L, et al. A Hierarchical Approach for Advanced Persistent Threat Detection with Attention-Based Graph Neural Networks[J]. Security and Communication Networks, 2021, 2021:1-14.
|
[18] |
DIJK A. Detection of Advanced Persistent Threats Using Artificial Intelligence for Deep Packet Inspection[C]//2021 IEEE International Conference on Big Data.Piscataway:IEEE, 2021:2092-2097.
|