西安电子科技大学学报 ›› 2023, Vol. 50 ›› Issue (1): 118-128.doi: 10.19665/j.issn1001-2400.2023.01.014

• • 上一篇    下一篇

一种用于自动驾驶场景的轻量级语义分割网络

刘博翀(),蔡怀宇(),杨诗远(),李灏天(),汪毅(),陈晓冬()   

  1. 天津大学 精密仪器与光电子工程学院光电信息技术教育部重点实验室,天津 300072
  • 收稿日期:2022-03-04 出版日期:2023-02-20 发布日期:2023-03-21
  • 通讯作者: 蔡怀宇(1965—),女,教授,E-mail:hycai@tju.edu.cn
  • 作者简介:刘博翀(1998—),男,天津大学硕士研究生,E-mail:2020202002@tju.edu.cn;|杨诗远(1998—),男,天津大学博士研究生,E-mail:yangshiyuan@tju.edu.cn;|李灏天(1996—),男,天津大学硕士研究生,E-mail:lihaotian@tju.edu.cn;|汪毅(1981—),女,副教授,E-mail:koala_wy@tju.edu.cn;|陈晓冬(1975—),男,教授,E-mail:xdchen@tju.edu.cn
  • 基金资助:
    天津市科技计划项目(17ZXGGX00140)

Lightweight semantic segmentation network for autonomous driving scenarios

LIU Bochong(),CAI Huaiyu(),YANG Shiyuan(),LI Haotian(),WANG Yi(),CHEN Xiaodong()   

  1. Ministry of Education Key Laboratory of Optoelectronic Information Technology,School of Precision Instrument and Optoelectronic Engineering,Tianjin University,Tianjin 300072,China
  • Received:2022-03-04 Online:2023-02-20 Published:2023-03-21

摘要:

在自动驾驶场景下,针对语义分割模型在车载硬件设备中部署时内存受限且算力不足的问题,需要设计一种较好权衡效率和精度的语义分割模型。采用单分支网络结构,设计了一个轻量级多尺度双向注意力网络。为了实现高效的特征提取,设计了一种轻量级卷积单元来构成网络的特征提取骨干。为了较好地定位和分割道路场景中尺度差异较大的物体,提出了一种多尺度双向注意力模块。它具有全局多尺度感受野,并且在沿一个方向编码通道注意力的同时保留了另一个方向的空间位置信息。基于该注意力模块,设计了跳跃注意力连接模块和特征注意力融合模块,使得输出特征兼具细节信息和语义信息。模型在Cityscapes数据集上以0.9M的参数量,取得了71.86%的平均交并比,同时在单个RTX2080Ti GPU下实现了88FPS的推理速度。实验结果表明,该模型能够实现较高的分割精度,适用于车载硬件下的部署和应用,具有一定的实用价值。

关键词: 自动驾驶, 语义分割, 轻量级网络, 注意力机制, 深度学习

Abstract:

In the autonomous driving scenario,aiming at the problem of limited memory and insufficient computing power when the semantic segmentation model is deployed in vehicle hardware devices,it is necessary to design a semantic segmentation model that can balance efficiency and accuracy.In this paper,a single-branch network structure is used to design a lightweight multi-scale bidirectional attention network.To achieve efficient feature extraction,a lightweight convolutional unit is designed to form the feature extraction backbone of the network.In order to better locate and segment objects with large scale differences in road scenes,a multi-scale bidirectional attention module is proposed which has a global multi-scale receptive field and encodes channel attention in one direction while preserving spatial location information in the other.Based on this attention module,a skip attention connection module and a feature attention fusion module are designed,so that the output features have both detailed information and semantic information.On the Cityscapes dataset,the model in this paper achieves an MIoU(Mean Intersection over Union) of 71.86% with a parameter size of 0.9M,and achieves an inference speed of 88FPS(Frames Per Second) under a single RTX2080Ti GPU.The test results on public datasets show that the model achieves a high segmentation accuracy and is suitable for deployment and application under in-vehicle hardware,which is of certain practical value.

Key words: automatic driving, semantic segmentation, lightweight network, attention mechanism, deep learning

中图分类号: 

  • TP391.4