西安电子科技大学学报 ›› 2023, Vol. 50 ›› Issue (1): 129-136.doi: 10.19665/j.issn1001-2400.2023.01.015

• • 上一篇    下一篇

融合注意力引导的多尺度低照度图像增强方法

张雅荔(),李文元(),李昌禄(),丁少博()   

  1. 天津大学 微电子学院,天津 300072
  • 收稿日期:2022-03-30 出版日期:2023-02-20 发布日期:2023-03-21
  • 通讯作者: 李文元(1945—),男,教授,博士,E-mail:13820959586@163.com
  • 作者简介:张雅荔(1996—),女,天津大学硕士研究生,E-mail:zylazz_1227@tju.edu.cn;|李昌禄(1975—),男,天津大学高级工程师,硕士,E-mail:3383928167@qq.com;|丁少博(1996—),男,天津大学硕士研究生,E-mail:akat@tju.edu.cn
  • 基金资助:
    天津市科技支撑项目(16YFZCGX00760)

Method for enhancement of the multi-scale low-light image by combining an attention guidance

ZHANG Yali(),LI Wenyuan(),LI Changlu(),DING Shaobo()   

  1. School of Microelectronics,Tianjin University,Tianjin 300072,China
  • Received:2022-03-30 Online:2023-02-20 Published:2023-03-21

摘要:

弱光环境导致图像采集设备拍摄的照片呈现出对比度低、亮度较暗、目标物难以分辨等特点。为了改善图像质量,提出了一种融合注意力引导的多尺度低照度图像增强方法。首先,构建密集残差网络作为多尺度特征提取器,用于提取低照度图像中不同尺度的特征图;其次,利用改进的RefineNet对提取出的不同尺度的特征图进行融合,以便充分利用图像中的特征信息;同时,在网络中引入注意力机制,基于边缘检测结果生成注意力图,并与损失函数相结合来引导网络进行训练,在不增加网络推理负担的同时,增强隐藏在黑暗中的细节信息;最后,实验分别选用合成图像和SID(See-in-the-Dark)数据集进行训练与测试。相较于对比算法,峰值信噪比(PSNR)和结构相似性(SSIM)分别平均提高了约0.79 dB和0.119。结果表明,所提方法能有效提高亮度和对比度,恢复图像边缘细节,主观视觉效果得到提升。

关键词: 图像处理, 图像增强, 注意力机制, 多尺度特征融合

Abstract:

The low light environment affects the image capture equipment,resulting in low contrast,low brightness,and difficulty in distinguishing objects.In order to improve image quality,a method for enhancement of the multi-scale low-light image by combining an attention guidance is proposed.First,a dense residual network is constructed as a multi-scale feature extractor to extract feature maps at different scales in low light images,and the extracted feature maps are fused by using a modified RefineNet,which makes full use of the feature information in the image.Meanwhile,an interpretable attention mechanism is designed to generate an attention graph based on the results of edge detection.Then by combining a loss function the network is guided through training.The purpose is to enhance edge detail information hidden in the dark without increasing the network’s inference burden.Finally,experiments are completed on synthetic images and SID(See-in-the-Dark) datasets,with the results showing that the proposed method can effectively improve brightness and contrast,restore image edge details as well as improve subjective visual effects.Compared to the contrast algorithm,the PSNR and SSIM are improved by at least 0.79dB and 0.119 on average,respectively.

Key words: image processing, image enhancement, attention mechanism, multi-scale feature fusion

中图分类号: 

  • TP391.4