[1] |
ZHOU J, HUANG J X, CHEN Q, et al. Deep Learning for Aspect-Level Sentiment Classification:Survey,Vision,and Challenges[J]. IEEE Access, 2019, 7:78454-78483.
doi: 10.1109/Access.6287639
|
[2] |
曹卫东, 李嘉琪, 王怀超. 采用注意力门控卷积网络模型的目标情感分析[J]. 西安电子科技大学学报, 2019, 46(6):30-36.
|
|
CAO Weidong, LI Jiaqi, WANG Huaichao. Analysis of Targeted Sentiment by the Attention Gated Convolutional Network Model[J]. Journal of Xidian University, 2019, 46(6):30-36.
|
[3] |
ZHU X, ZHU L, GUO J, et al. GL-GCN:Global and Local Dependency Guided Graph Convolutional Networks for Aspect-Based Sentiment Classification[J]. Expert Systems with Applications, 2021, 186:115712.
doi: 10.1016/j.eswa.2021.115712
|
[4] |
XU Q, ZHU L, DAI T, et al. Aspect-Based Sentiment Classification with Multi-Attention Network[J]. Neurocomputing, 2020, 388:135-143.
doi: 10.1016/j.neucom.2020.01.024
|
[5] |
WANG K, SHEN W, YANG Y, et al. Relational Graph Attention Network for Aspect-Based Sentiment Analysis[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Online:ACL, 2020:3229-3238.
|
[6] |
TANG D, QIN B, FENG X, et al. Effective LSTMs for Target-Dependent Sentiment Classification[C]// Proceedings of COLING 2016,the 26th International Conference on Computational Linguistics:Technical Papers.Osaka:ACL, 2016:3298-3307.
|
[7] |
GRAVES A, JAITLY N, MOHAMED A. Hybrid Speech Recognition with Deep Bidirectional LSTM[C]// 2013 IEEE Workshop on Automatic Speech Recognition and Understanding.Olomouc:ASRU, 2013:273-278.
|
[8] |
WANG Y, HUANG M, ZHU X, et al. Attention-Based LSTM for Aspect-Level Sentiment Classification[C]// Proceedings of the 2016Conference on Empirical Methods in Natural Language Processing.Austin:EMNLP, 2016:606-615.
|
[9] |
MA D, LI S, ZHANG X, et al. Interactive Attention Networks for Aspect-level Sentiment Classification[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence.Melbourne:IJCAI, 2017:4068-4074.
|
[10] |
CHEN P, SUN Z, BING L, et al. Recurrent Attention Network on Memory for Aspect Sentiment Analysis[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.Copenhagen:EMNLP, 2017:452-461.
|
[11] |
GU S, ZHANG L, HOU Y, et al. A Position-Aware Bidirectional Attention Network for Aspect-Level Sentiment Analysis[C]// Proceedings of the 27th International Conference on Computational Linguistics.Santa Fe, New Mexico: COLING, 2018:774-784.
|
[12] |
FAN F, FENG Y, ZHAO D. Multi-grained Attention Network for Aspect-level Sentiment Classification[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.Brussels:EMNLP, 2018:3433-3442.
|
[13] |
HUANG B, OU Y, CARLEY K M. Aspect Level Sentiment Classification with Attention-Over-Attention Neural Networks[C]// International Conference on Social Computing,Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation. Washington DC: SBP-BRiMS, 2018:197-206.
|
[14] |
ZHANG C, LI Q, SONG D. Aspect-based Sentiment Classification with Aspect-Specific Graph Convolutional Networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: EMNLP-IJCNLP, 2019:4568-4578.
|
[15] |
SUN K, ZHANG R, MENSAH S, et al. Aspect-Level Sentiment Analysis via Convolution over Dependency Tree[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: EMNLP-IJCNLP, 2019:5679-5688.
|
[16] |
HUANG B, CARLEY K M. Syntax-Aware Aspect Level Sentiment Classification with Graph Attention Networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: EMNLP-IJCNLP, 2019:5469-5477.
|
[17] |
王光, 李鸿宇, 邱云飞, 等. 基于图卷积记忆网络的方面级情感分类[J]. 中文信息学报, 2021, 35(8):98-106.
|
|
WANG Guang, LI Hongyu, QIU Yunfei, et al. Aspect-Based Sentiment Classification via Memory Graph Convolutional Network[J]. Journal of Chinese Information Processing, 2021, 35(8):98-106.
|
[18] |
王汝言, 陶中原, 赵容剑, 等. 多交互图卷积网络用于方面情感分析[J]. 电子与信息学报, 2022, 44(3):1111-1118.
|
|
WANG Ruyan, TAO Zhongyuan, ZHAO Rongjian, et al. Multi-Interaction Graph Convolutional Networks for Aspect-Level Sentiment Analysis[J]. Journal of Electronics & Information Technology, 2022, 44(3):1111-1118.
|
[19] |
PENNINGTON J, SOCHER R, MANNING C D. Glove:Global Vectors for Word Representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.Doha:EMNLP, 2014:1532-1543.
|
[20] |
李源, 崔玉爽, 王伟. 一种基于字词双通道网络的文本情感分析方法[J]. 西安电子科技大学学报, 2021, 48(6):179-186.
|
|
LI Yuan, CUI Yushuang, WANG Wei. Method for the Analysis of Text Sentiment Based on the Word Dual-Channel Network[J]. Journal of Xidian University, 2021, 48(6):179-186.
|
[21] |
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph Attention Networks[J]. The 6th International Conference on Learning Representations.Vancouver:ICLR, 2018:1-12.
|
[22] |
ZHOU J, HUANG J X, HU Q V, et al. Sk-Gcn:Modeling Syntax and Knowledge via Graph Convolutional Network for Aspect-Level Sentiment Classification[J]. Knowledge-Based Systems, 2020, 205:106292.
doi: 10.1016/j.knosys.2020.106292
|
[23] |
蒋浩泉, 张儒清, 郭嘉丰, 等. 图卷积网络与自注意机制在文本分类任务上的对比分析[J]. 中文信息学报, 2021, 35(12):84-93.
|
|
JIANG Haoquan, ZHANG Ruqing, GUO Jiafeng, et al. A Comparative Study of Graph Convolutional Networks and Self-Attention Mechanism on Text Classification[J]. Journal of Chinese Information Processing, 2021, 35(12):84-93.
|
[24] |
DONG L, WEI F, TAN C, et al. Adaptive Recursive Neural Network for Target-Dependent Twitter Sentiment Classification[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics(Volume 2:Short Papers).Baltimore:ACL, 2014:49-54.
|
[25] |
PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. Semeval-2014 Task 4:Aspect Based Sentiment Analysis[C]// The 8th International Workshop on Semantic Evaluation.Dublin:SemEval, 2014:27-35.
|