[1] |
HODGE V J, KRISHNAN R, AUSTIN J, et al. Short-Term Prediction of Traffic Flow Using a Binary Neural Network[J]. Neural Computing and Applications, 2014, 25(8):1639-1655.
doi: 10.1007/s00521-014-1646-5
|
[2] |
SUN H, ZHANG C, RAN B. Interval Prediction for Traffic Time Series Using Local Linear Predictor[C]// Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems.Piscataway:IEEE, 2004:410-415.
|
[3] |
OKUTANI I, STEPHANEDES Y J. Dynamic Prediction of Traffic Volume Through Kalman Filtering Theory[J]. Transportation Research Part B:Methodological, 1984, 18(1):1-11.
doi: 10.1016/0191-2615(84)90002-X
|
[4] |
FU G, HAN G, LU F, et al. Short-Term Traffic Flow Forecasting Model Based on Support Vector Machine Regression[J]. Journal of South China University of Technology :Natural Science Edition, 2013, 41(9):71-76.
|
[5] |
YIN H, WONG S C, XU J, et al. Urban Traffic Flow Prediction Using a Fuzzy-Neural Approach[J]. Transportation Research Part C:Emerging Technologies, 2002, 10(2):85-98.
doi: 10.1016/S0968-090X(01)00004-3
|
[6] |
SUN S, ZHANG C, YU G. A Bayesian Network Approach to Traffic Flow Forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(1):124-132.
doi: 10.1109/TITS.2006.869623
|
[7] |
NONG L P, WANG J Y, LIN J M, et al. Hypergraph Wavelet Neural Networks for 3D Object Classification[J]. Neurocomputing, 2021, 463:580-595.
doi: 10.1016/j.neucom.2021.08.006
|
[8] |
YU B, YIN H, ZHU Z. Spatio-Temporal Graph Convolutional Networks:A Deep Learning Framework for Traffic Forecasting[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann, 2018:3634-3640.
|
[9] |
LI Y, YU R, SHAHABI C, et al. Diffusion Convolutional Recurrent Neural Network:Data-Driven Traffic Forecasting[C/OL].[2018-2-22]. https://arxiv.org/abs/1707.01926v2.
|
[10] |
ZHAO L, SONG Y, ZHANG C, et al. T-GCN:A Temporal Graph Convolutional Network for Traffic Prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9):3848-3858.
doi: 10.1109/TITS.6979
|
[11] |
GUO S, LIN Y, FENG N, et al. Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019, 33(1):922-929.
|
[12] |
SONG C, LIN Y, GUO S, et al. Spatial-Temporal Synchronous Graph Convolutional Networks:A New Framework for Spatial-Temporal Network Data Forecasting[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020:914-921.
|
[13] |
VELIKOVI P, CUCURULL G, CASANOVA A, et al. Graph Attention Networks[C/OL].[2018-02-4]. https://arxiv.org/abs/1710.10903.
|
[14] |
ZHU J, SONG Y, ZHAO L, et al. A3T-GCN:Attention Temporal Graph Convolutional Network for Traffic Forecasting[C/OL].[2020-06-20]. https://arxiv.org/abs/2006.11583.
|
[15] |
WU Z, PAN S, LONG G, et al. Graph Wavenet for Deep Spatial-Temporal Graph Modeling[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann, 2019:1907-1913.
|
[16] |
LIU W, WU G, REN F, et al. DFF-ResNet:An Insect Pest Recognition Model Based on Residual Networks[J]. Big Data Mining and Analytics, 2020, 3(4):300-310.
doi: 10.26599/BDMA.2020.9020021
|
[17] |
HUANG R, HUANG C, LIU Y, et al. LSGCN:Long Short-Term Traffic Prediction with Graph Convolutional Networks[C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann. 2020:2355-2361.
|
[18] |
XU M, DAI W, LIU C, et al. Spatial-Temporal Transformer Networks for Traffic Flow Forecasting[J/OL].[2020-01-14]. https://arxiv.org/abs/2001.02908.
|
[19] |
SUTSKEVER I, VINYALS O, LE Q V. Sequence to Sequence Learning with Neural Networks[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014:3104-3112.
|