西安电子科技大学学报 ›› 2023, Vol. 50 ›› Issue (2): 147-160.doi: 10.19665/j.issn1001-2400.2023.02.015

• 网络空间安全与其他 • 上一篇    下一篇

一种Hilbert编码的本地化位置隐私保护方法

晏燕(),董卓越(),徐飞(),冯涛()   

  1. 兰州理工大学 计算机与通信学院,甘肃 兰州 730050
  • 收稿日期:2022-04-26 出版日期:2023-04-20 发布日期:2023-05-12
  • 作者简介:晏 燕(1980—),女,副教授,博士,E-mail:yanyan@lut.edu.cn;|董卓越(1997—),男,兰州理工大学硕士研究生,E-mail:dongzy@lut.edu.cn;|徐 飞(1996—),男,兰州理工大学硕士研究生,E-mail:xufei@lut.edu.cn;|冯 涛(1970—),男,教授,博士,E-mail:fengt@lut.edu.cn
  • 基金资助:
    国家自然科学基金(61762059);国家自然科学基金(61862040);甘肃省自然科学基金(22JR5RA279)

Localized location privacy protection method using the Hilbert encoding

YAN Yan(),DONG Zhuoyue(),XU Fei(),FENG Tao()   

  1. School of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,China
  • Received:2022-04-26 Online:2023-04-20 Published:2023-05-12

摘要:

基于位置的各种大数据服务在为用户提供便利的同时,也导致了各种隐私泄露的风险。本地化差分隐私模型避免了对可信第三方数据收集平台的依赖,使得用户能够依据个人需求处理和保护敏感信息,因此更适用于位置隐私保护的场景。针对现有本地化差分隐私位置保护方法编码机制复杂、位置数据可用性低等问题,提出一种基于希尔伯特编码的本地化差分隐私位置保护方法。用户端根据本地化差分隐私模型对自身所处网格的希尔伯特编码进行随机响应扰动处理,实现原始位置的隐私保护;服务器端收集大量用户的扰动位置编码并进行希尔伯特解码,进而判断用户所处的网格位置,实现对用户数量和分布密度的统计分析。通过实际位置数据集合上的实验证明,所提方法能够在实现用户位置本地化差分隐私保护的基础上提供更好的位置数据可用性和运行效率。

关键词: 位置服务, 位置隐私, 本地化差分隐私, 希尔伯特编码, 随机响应

Abstract:

Various location-based big data services not only provide users with convenience but also lead to privacy leakage risks.The local differential privacy model avoids the dependence on trusted third-party data collection platforms and enables users to process and protect sensitive information according to their personal needs.Therefore,it is more suitable for location privacy protection scenarios.In view of the complex encoding mechanism and low availability of the current local differential privacy location protection methods,a local differential privacy location protection method based on the Hilbert encoding is proposed.The user side performs random response perturbation on the Hilbert code of the grid where he is located according to the local differential privacy model,so as to realize the privacy protection of his original location.The server side collects a large number of users’ disturbed location codes and performs the Hilbert decoding,in order to determine the grid location of users and realize the statistical analysis of distribution density of users.Experiments on actual location datasets prove that the proposed method can provide a better location data availability and operational efficiency on the basis of realizing local differential privacy protection of users’ location.

Key words: location-based service, location privacy, local differential privacy, Hilbert encoding, random response

中图分类号: 

  • TP309.2