[1] |
ZHAO Z, DU Q, WANG D, et al. Overview of Prospects for Service-Aware Radio Access towards 6G Networks[J]. Electronics, 2022, 11(8):1262.
doi: 10.3390/electronics11081262
|
[2] |
GONG S, XING C, ZHAO X, et al. Unified IRS-Aided MIMO Transceiver Designs via Majorization Theory[J]. IEEE Transactions on Signal Processing, 2021, 69:3016-3032.
doi: 10.1109/TSP.2021.3078571
|
[3] |
GONG S, XING C, LAU V K N, et al. Majorization-Minimization Aided Hybrid Transceivers for MIMO Interference Channels[J]. IEEE Transactions on Signal Processing, 2020, 68:4903-4918.
doi: 10.1109/TSP.78
|
[4] |
LIU L, ZHOU Y, YUAN J, et al. Economically Optimal MS Association for Multimedia Content Delivery in Cache-Enabled Heterogeneous Cloud Radio Access Networks[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(7):1584-1593.
doi: 10.1109/JSAC.49
|
[5] |
LIU L, ZHOU Y, ZHUANG W, et al. Tractable Coverage Analysis for Hexagonal Macrocell-Based Heterogeneous UDNs with Adaptive Interference-Aware CoMP[J]. IEEE Transactions on Wireless Communications, 2018, 18(1):503-517.
doi: 10.1109/TWC.2018.2882434
|
[6] |
DU Q, SONG H, ZHU X. Social-Feature Enabled Communications among Devices toward the Smart IoT Community[J]. IEEE Communications Magazine, 2018, 57(1):130-137.
|
[7] |
LIU L, ZHOU Y, GARCIA V, et al. Load Aware Joint CoMP Clustering and Inter-Cell Resource Scheduling in Heterogeneous Ultra Dense Cellular Networks[J]. IEEE Transactions on Vehicular Technology, 2017, 67(3):2741-2755.
doi: 10.1109/TVT.25
|
[8] |
LIN J, WANG G, ATAPATTU S, et al. Transmissive Metasurfaces Assisted Wireless Communications on Railways:Channel Strength Evaluation and Performance Analysis[J]. IEEE Transactions on Communications, 2023, 71(3):1827-1841.
doi: 10.1109/TCOMM.2023.3239932
|
[9] |
ZHOU Y, LIU L, WANG L, et al. Service-Aware 6G:An Intelligent and Open Network Based on the Convergence of Communication,Computing and Caching[J]. Digital Communications and Networks, 2020, 6(3):253-260.
doi: 10.1016/j.dcan.2020.05.003
|
[10] |
闫实, 彭木根, 王文博. 通信-感知-计算融合:6G愿景与关键技术[J]. 北京邮电大学学报, 2021, 44(4):1-11.
doi: 10.13190/j.jbupt.2021-081
|
|
YAN Shi, PENG Mugen, WANG Wenbo. Integration of Communication,Sensing and Computing:the Vision and Key Technologies of 6G[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(4):1-11.
doi: 10.13190/j.jbupt.2021-081
|
[11] |
LIN J, WANG G, ATAPATTU S, et al. Transmissive Metasurfaces Assisted Wireless Communications on Railways:Channel Strength Evaluation and Performance Analysis[J]. IEEE Transactions on Communications, 2023, 71(3):1827-1841.
doi: 10.1109/TCOMM.2023.3239932
|
[12] |
崔新雨, 伍杰, 周一青, 等. 空天地一体化融合组网的挑战与关键技术[J]. 西安电子科技大学学报, 2023, 50(1):1-11.
|
|
CUI Xinyu, WU Jie, ZHOU Yiqing, et al. Challenges of and Key Technologies for the Air-Space-Ground Integrated Network[J]. Journal of Xidian University, 2023, 50(1):1-11.
|
[13] |
李升远, 张馨恬, 唐世阳. 采用OFDM-LFM的MIMO雷达高速目标波形设计[J]. 西安电子科技大学学报, 2018, 45(3):7-12.
|
|
LI Shengyuan, ZHANG Xintian, TANG Shiyang. MIMO Radar Waveform Design via OFDM-LFM for a High Speed Target[J]. Journal of Xidian University, 2018, 45(3):7-12.
|
[14] |
HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal Time Frequency Space Modulation[C]//2017 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE, 2017:1-6.
|
[15] |
RAVITEJA P, HONG Y, VITERBO E, et al. Effective Diversity of OTFS Modulation[J]. IEEE Wireless Communications Letters, 2019, 9(2):249-253.
doi: 10.1109/LWC.5962382
|
[16] |
ZHANG C, XING W, YUAN J, et al. Performance of LDPCCoded OTFS Systems over High Mobility Channels[J]. ZTE Communications, 2022, 19(4):45-53.
|
[17] |
HONG Y, THAJ T, VITERBO E. Delay-Doppler Communications:Principles and Applications[M]. Amsterdam:Elsevier, 2022.
|
[18] |
RAVITEJA P, VITERBO E, HONG Y. OTFS Performance on Static Multipath Channels[J]. IEEE Wireless Communications Letters, 2019, 8(3):745-748.
doi: 10.1109/LWC.2018.2890643
|
[19] |
ZHANG J, JAYALATH A D S, CHEN Y. Asymmetric OFDM Systems Based on Layered FFT Structure[J]. IEEE Signal Processing Letters, 2007, 14(11):812-815.
doi: 10.1109/LSP.2007.903230
|
[20] |
涂岳. 基于深度学习的OTFS信号解调技术研究[D]. 北京: 北京邮电大学, 2021.
|
[21] |
RAVITEJA P, PHAN K T, HONG Y. Embedded Pilot-Aided Channel Estimation for OTFS in Delay-Doppler Channels[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5):4906-4917.
doi: 10.1109/TVT.25
|
[22] |
RAMACHANDRAN M K, CHOCKALINGAM A. MIMO-OTFS in High-Doppler Fading Channels:Signal Detection and Channel Estimation[C]//2018 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE, 2018:206-212
|
[23] |
YUAN W, LI S, WEI Z, et al. Data-Aided Channel Estimation for OTFS Systems with a Superimposed Pilot and Data Transmission Scheme[J]. IEEE Wireless Communications Letters, 2021, 10(9):1954-1958.
doi: 10.1109/LWC.2021.3088836
|
[24] |
SHEN W, DAI L, AN J, et al. Channel Estimation for Orthogonal Time Frequency Space (OTFS) Massive MIMO[J]. IEEE Transactions on Signal Processing, 2019, 67(16):4204-4217.
doi: 10.1109/TSP.78
|
[25] |
SURABHI G D, CHOCKALINGAM A. Low-Complexity Linear Equalization for OTFS Modulation[J]. IEEE Communications Letters, 2019, 24(2):330-334.
doi: 10.1109/COML.4234
|
[26] |
TIWARI S, DAS S S, RANGAMGARI V. Low Complexity LMMSE Receiver for OTFS[J]. IEEE Communications Letters, 2019, 23(12):2205-2209.
doi: 10.1109/LCOMM.2019.2945564
|
[27] |
ZOU T, XU W, GAO H, et al. Low-Complexity Linear Equalization for OTFS Systems with Rectangular Waveforms[C]//2021 IEEE International Conference on Communications Workshops (ICC Workshops). Piscataway:IEEE, 2021:1-6.
|
[28] |
RAVITEJA P, PHAN K T, HONG Y, et al. Interference Cancellation and Iterative Detection for Orthogonal Time Frequency Space Modulation[J]. IEEE Transactions on Wireless Communications, 2018, 17(10):6501-6515.
doi: 10.1109/TWC.2018.2860011
|
[29] |
LI L, LIANG Y, FAN P, et al. Low Complexity Detection Algorithms for OTFS under Rapidly Time-Varying Channel[C]// 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring).Piscataway:IEEE, 2019:1-5.
|
[30] |
THAJ T, VITERBO E. Low Complexity Iterative Rake Decision Feedback Equalizer for Zero-Padded OTFS Systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12):15606-15622.
doi: 10.1109/TVT.2020.3044276
|
[31] |
LI H, DONG Y, GONG C, et al. Low Complexity Receiver via Expectation Propagation for OTFS Modulation[J]. IEEE Communications Letters, 2021, 25(10):3180-3184.
doi: 10.1109/LCOMM.2021.3101827
|
[32] |
YUAN W, WEI Z, YUAN J, et al. A simple Variational Bayes Detector for Orthogonal Time Frequency Space (OTFS) Modulation[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7):7976-7980.
doi: 10.1109/TVT.25
|
[33] |
YE H, LI G Y, JUANG B H. Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems[J]. IEEE Wireless Communications Letters, 2017, 7(1):114-117.
doi: 10.1109/LWC.2017.2757490
|
[34] |
HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778.
|