[1] |
SONG M K, WANG Z B, ZHANG Z F, et al. Analyzing User-Level Privacy Attack Against Federated Learning[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(10):2430-2444.
doi: 10.1109/JSAC.49
|
[2] |
SHOKRI R, STRONATI M, SONG C, et al. Membership Inference Attacks Against Machine Learning Models[C]// 2017 IEEE Symposium on Security and Privacy.Piscataway:IEEE, 2017:3-18.
|
[3] |
SALEM A, ZHANG Y, HUMBERT M, et al. ML-Leaks:Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models[C]// The 26th Annual Network and Distributed System Security Symposium.California:NDSS, 2019:24-27.
|
[4] |
YU L, LIU L, PU C, et al. Differentially Private Model Publishing for Deep Learning[C]// 2019 IEEE Symposium on Security and Privacy (SP).Piscataway:IEEE, 2019:332-349.
|
[5] |
康海燕, 冀源蕊. 基于本地化差分隐私的联邦学习方法研究[J]. 通信学报, 2022, 43(10):94-105.
doi: 10.11959/j.issn.1000-436x.2022189
|
|
KANG Haiyan, JI Yuanrui. Research on Federated Learning Approach Based on Local Differential Privacy[J]. Journal on Communications, 2022, 43(10):94-105.
doi: 10.11959/j.issn.1000-436x.2022189
|
[6] |
PODSCHWADT R, TAKABI D, HU P, et al. A Survey of Deep Learning Architectures for Privacy-Preserving Machine Learning with Fully Homomorphic Encryption[J]. IEEE Access, 2022, 10:117477-117500.
doi: 10.1109/ACCESS.2022.3219049
|
[7] |
CHEN J, LI K, YU P. Privacy-Preserving Deep Learning Model for Decentralized VANETs Using Fully Homomorphic Encryption and Blockchain[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8):11633-11642.
doi: 10.1109/TITS.2021.3105682
|
[8] |
RESENDE A, RAILSBACK D, DOWSLEY R, et al. Fast Privacy-Preserving Text Classification Based on Secure Multiparty Computation[J]. IEEE Transactions on Information Forensics and Security, 2022, 17:428-442.
doi: 10.1109/TIFS.2022.3144007
|
[9] |
FENG Q, HE D, SHEN J, et al. PPNNT:Multi-Party Privacy-Preserving Neural Network Training System[J]. IEEE Transactions on Artificial Intelligence, 2023 (Early Access):1-14.
|
[10] |
DWORK C. Differential Privacy[C]// The 33rd International Conference on Automata,Languages and Programming - Volume Part II,ICALP’06.Berlin:Springer, 2006:1-12.
|
[11] |
徐花, 田有亮. 差分隐私下的权重社交网络隐私保护[J]. 西安电子科技大学学报, 2022, 49(1):17-25.
|
|
XU Hua, TIAN Youliang. Protection of Privacy of the Weighted Social Network under Differential Privacy[J]. Journal of Xidian University, 2022, 49(1):17-25.
|
[12] |
晏燕, 董卓越, 徐飞, 等. 一种Hilbert编码的本地化位置隐私保护方法[J]. 西安电子科技大学学报, 2023, 50(2):147-160.
|
|
YAN Yan, DONG Zhuoyue, XU Fei, et al. Localized Location Privacy Protection Method Using the Hilbert Encoding[J]. Journal of Xidian University, 2023, 50(2):147-160.
|
[13] |
HU Y, TAN Z, LI X, et al. Adaptive Clipping Bound of Deep Learning with Differential Privacy[C]// 2021 IEEE International Conference on Trust,Security and Privacy in Computing and Communications (TrustCom).Piscataway:IEEE, 2021:428-435.
|
[14] |
FU J, CHEN Z, HAN X. Adap DP-FL:Differentially Private Federated Learning with Adaptive Noise[C]// 2022 IEEE International Conference on Trust,Security and Privacy in Computing and Communications (TrustCom).Piscataway:IEEE, 2022:656-663.
|
[15] |
WANG F, XIE M, TAN Z, et al. Preserving Differential Privacy in Deep Learning Based on Feature Relevance Region Segmentation[J]. IEEE Transactions on Emerging Topics in Computing, 2023 (Early Access):1-11.
|
[16] |
ABADI M, CHU A, GOODFELLOW I, et al. Deep Learning with Differential Privacy[C]// The 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS '16). New York: ACM, 2016:308-318.
|
[17] |
ZHANG X, DIING J, WU M, et al. Adaptive Privacy Preserving Deep Learning Algorithms for Medical Data[C]// 2021 IEEE Winter Conference on Applications of Computer Vision (WACV).Piscataway:IEEE, 2021:1168-1177
|
[18] |
PHAN N, WU X, HU H. Adaptive Laplace Mechanism:Differential Privacy Preservation in Deep Learning[C]// 2017 IEEE International Conference on Data Mining (ICDM).Piscataway:IEEE, 2017:385-394.
|
[19] |
ZHANG Y, BAI S. An Improved LRP-Based Differential Privacy Preserving Deep Learning Framework[C]// 2021 17th International Conference on Computational Intelligence and Security (CIS).Piscataway:IEEE, 2021:484-488.
|
[20] |
LIU X, LI H, XU G, et al. Adaptive Privacy-Preserving Federated Learning[J]. Peer-to-Peer Networking and Applications, 2020, 13:2356-2366.
doi: 10.1007/s12083-019-00869-2
|
[21] |
BUN M, STEINKE T. Concentrated Differential Privacy:Simplifications,Extensions,and Lower Bounds[C]// Theory of Cryptography Conference.Berlin:Springer, 2016:635-658.
|
[22] |
LI C, LOU J, LIU S, et al. Shapley Explainer-An Interpretation Method for GNNs Used in SDN[C]// GLOBECOM 2022-2022 IEEE Global Communications Conference.Piscataway:IEEE, 2022:5534-5540.
|
[23] |
纪守领, 杜天宇, 李进锋, 等. 机器学习模型安全与隐私研究综述[J]. 软件学报, 2021, 32(1):41-67.
|
|
JI Shouling, DU Tianyu, LI Jinfeng, et al. Research on Security and Privacy of Machine Learning Models[J]. Journal of Software, 2021, 32(1):41-67.
|
[24] |
ZHANG J, ZHANG Z, XIAO X, et al. Functional Mechanism:Regression Analysis under Differential Privacy[J]. Proceedings of the VLDB Endowment, 2012, 5(11):1364-1375.
doi: 10.14778/2350229.2350253
|
[25] |
KUMAR G, PRIYA G, DILEEP M, et al. Image Deconvolution Using Deep Learning-Based Adam Optimizer[C]// 2022 6th International Conference on Electronics,Communication and Aerospace Technology.Piscataway:IEEE, 2022:901-904.
|