西安电子科技大学学报 ›› 2023, Vol. 50 ›› Issue (4): 65-75.doi: 10.19665/j.issn1001-2400.2023.04.007

• 网络空间安全专栏 • 上一篇    下一篇

威胁情报提取与知识图谱构建技术研究

史慧洋1,2(),魏靖烜3(),蔡兴业3(),王鹤4(),高随祥5,6(),张玉清1,2,4,6()   

  1. 1.中国科学院大学 计算机科学与技术学院,北京 101408
    2.中国科学院大学 国家计算机网络入侵防范中心,北京 101408
    3.中国科学院大学 沈阳计算技术研究所,辽宁 沈阳 110168
    4.西安电子科技大学 网络与信息安全学院,陕西 西安 710071
    5.中国科学院大学 数学科学学院,北京 101408
    6.中关村实验室,北京 100094
  • 收稿日期:2023-01-19 出版日期:2023-08-20 发布日期:2023-10-17
  • 通讯作者: 张玉清
  • 作者简介:史慧洋(1988—),女,中国科学院大学博士研究生,E-mail:shihuiyang@ucas.ac.cn;|魏靖烜(1998—),男,中国科学院大学沈阳计算技术研究所博士研究生,E-mail:weijingxuan20@mails.ucas.edu.cn;|蔡兴业(1998—),男,中国科学院大学沈阳计算技术研究所硕士研究生,E-mail:caixingye20@mails.ucas.ac.cn;|王鹤(1998—),男,西安电子科技大学博士研究生,E-mail:hewang@xidian.edu.cn;|高随祥(1962—),男,中国科学院大学博士生导师,E-mail:sxgao@ucas.ac.cn
  • 基金资助:
    国家自然科学基金(11991022);国家自然科学基金(12071459)

Research on threat intelligence extraction and knowledge graph construction technology

SHI Huiyang1,2(),WEI Jingxuan3(),CAI Xingye3(),WANG He4(),GAO Suixiang5,6(),ZHANG Yuqing1,2,4,6()   

  1. 1. School of Computer Science and Technology,University of Chinese Academy of Sciences,Beijing 101408,China
    2. National Computer Network Intrusion Prevention Center,University of Chinese Academy of Sciences,Beijing 101408,China
    3. Shenyang Institute of Computing Technology,University of Chinese Academy of Sciences,Shenyang 110168,China
    4. School of Cyber Engineering,Xidian University,Xi’an 710071,China
    5. School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 101408,China
    6. Zhongguancun Laboratory,Beijing 100094,China
  • Received:2023-01-19 Online:2023-08-20 Published:2023-10-17
  • Contact: Yuqing ZHANG

摘要:

目前,攻击者使用的基础设施能适应更多的目标环境,成功侵入目标后,使用合法的用户凭证取得信任,并通过不断学习利用新的漏洞达到攻击目的。为了对抗攻击,提高威胁情报的使用价值,提出由情报搜集、信息抽取、本体构建和知识推理构建威胁情报的知识图谱框架,该框架可实现情报中重要指标的搜索和相互关联。然后基于Bert+BiSLTM+CRF 的失陷指标,识别抽取方法,加以正则匹配机制进行输出限制,用于从文本信息中识别抽取失陷指标信息,并进行结构化威胁信息表达标准格式转换。经过横向和纵向对比,该抽取模型在文本信息抽取中的精度和召回率较高。最后,以APT1为例,构建出威胁情报实体关系图,结合对抗战术和技术知识库框架将攻击行为转换为结构化格式,建立本体与原子本体知识图谱;通过知识图谱关联分析数据之间潜在的关联,发现具有相似性和相关性的威胁情报潜在的关联信息和攻击主体,进行威胁情报的关联分析,为制定防御策略提供依据。

关键词: 威胁情报, 神经网络, 本体, 失陷指标抽取, 对抗战术和技术知识库存, 知识图谱

Abstract:

At present,the infrastructure used by attackers can adapt to more target environments.After successfully invading the target,the attackers use legitimate user credentials to gain trust,and continuously learn to exploit new vulnerabilities to achieve the purpose of attacks.In order to combat attacks and to improve the quality and utilization efficiency of the threat intelligence,this paper constructs a knowledge mapping framework of threat intelligence through the following four processes:intelligence collection,information extraction,ontology construction,and knowledge reasoning.The proposed framework can realize the search for and correlation of essential indicators in the intelligence.Then,an indicator of compromise (IOC) recognition extraction method based on the Bert+BISLTM+CRF is proposed and a regular matching mechanism is applied to limit the output for identifying and extracting IOC information from the text information,followed by performing the structured threat information expression (STIX) standard format conversion.The accuracy and recall rate of this extraction model for the text information extraction are higher through horizontal and vertical comparison.Finally,by taking the APT1 as an example,this paper constructs the entity-relationship diagram of threat intelligence.The attack behavior is transformed into a structured format combined with the adversarial tactics,techniques,and common knowledge (ATT & CK) framework.A knowledge map of ontology and atomic ontology is established which is used to analyze the potential associations between data through the knowledge map associations and to discover potential associated information and attack agents in threat intelligence with similarity and correlation.The correlation analysis of threat intelligence is carried out,which provides the basis for the formulation of defense strategy.

Key words: threat intelligence, neural network, ontology, IOC extration, ATT&CK, knowledge graph

中图分类号: 

  • TP399