[1] |
李志鹏, 国雍, 陈耀佛, 等. 基于数据生成的类别均衡联邦学习[J]. 计算机学报, 2023, 46(3):609-625.
|
|
LI Zhipeng, GUO Yong, Chen Yaofo, et al. Class-Balanced Federated Learning Base on Data Generation[J]. Chinese Journal of Computers, 2023, 46(3):609-625.
|
[2] |
李荣昌, 刘涛, 郑海斌, 等. 基于最大最小策略的纵向联邦学习隐私保护方法 (2023)[J/OL].[2023-03-19].https://doi.org/10.16383/j.aas.c211233.
|
|
LI Rongchang, LIU Tao, ZHENG Haibing, et al. Privacy Preserving Method for Vertical Federated Leanig Base on Max-Min Strategy (2023)[J/OL].[2023-03-19].https://doi.org/10.16383/j.aas.c211233.
|
[3] |
KAIROUZ P, MCMAHAN B, AVENT B, et al. Advances and Open Problems in Federated Learning[J]. Foundations and Trends in Machine Learning, 2021, 14(1-2):1-210.
doi: 10.1561/2200000083
|
[4] |
顾育豪, 白跃彬. 联邦学习模型安全与隐私研究进展 (2023)[J/OL].[2023-03-19]. http://www.jos.org.cn/1000-9825/6658.htm.
|
|
GU Yuhao, BAI Yuebing. Survey on Security and Privacy of Federated Learning Models (2023)[J/OL].[2023-03-19]. http://www.jos.org.cn/1000-9825/6658.htm.
|
[5] |
刘俊旭, 孟小峰. 机器学习的隐私保护研究综述[J]. 计算机研究与发展, 2020, 57(2):346-362.
|
|
LIU Junxv, MENG Xiaofeng. Survey on Privacy-Preserving Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(2):346-362.
|
[6] |
谭作文, 张连福. 机器学习隐私保护研究综述[J]. 软件学报, 2020, 31(7):2127-2156.
|
|
TAN Zuowen, ZHANG Lianfu. Survey on Privacy Preserving Techniques for Machine Learning[J]. Journal of Software, 2020, 31(7):2127-2156. (in Chinese)
|
[7] |
纪守领, 杜天宇, 李进锋, 等. 机器学习模型安全与隐私研究综述[J]. 软件学报, 2021, 32(1):41-67.
|
|
JI Shouling, DU Tianyu, LI Jinfeng, et al. Security and Privacy of Machine Learning Models:A Survey[J]. Journal of Software, 2021, 32(1):41-67. (in Chinese)
|
[8] |
LIU X, LI H, XU G, et al. Adaptive Privacy-Preserving Federated Learning[J]. Peer-to-Peer Networking and Applications, 2020, 13(6):2356-2366.
doi: 10.1007/s12083-019-00869-2
|
[9] |
WEI K, LI J, DING M, et al. User-Level Privacy-Preserving Federated Learning:Analysis and Performance Optimization[J]. IEEE Transactions on Mobile Computing, 2021, 21(9):3388-3401.
doi: 10.1109/TMC.2021.3056991
|
[10] |
SHEJWALKAR V, HOUMANSADR A. Manipulating the Byzantine:Optimizing Model Poisoning Attacks and Defenses for Federated Learning[C]// Network and Distributed Systems Security (NDSS) Symposium 2021. San Diego: NDSS, 2021:1-19.
|
[11] |
GU Z, HE L, LI P, et al. FREPD:A Robust Federated Learning Framework on Variational Autoencoder[J]. Computer Systems:Science & Engineering, 2021, 39(3):307-320.
|
[12] |
LI S, CHENG Y, WANG W, et al. Learning to Detect Malicious Clients for Robust Federated Learning (2020)[J/OL].[2020-02-01]. https://arxiv.org/abs/2002.00211v1.
|
[13] |
ZHAO Y, CHEN J, ZHANG J, et al. PDGAN:A Novel Poisoning Defense Method in Federated Learning Using Generative Adversarial Network[C]// Algorithms and Architectures for Parallel Processing:19th International Conference,ICA3PP 2019.Heidelberg:Springer, 2020:595-609.
|
[14] |
ZHAO Y, CHEN J, ZHANG J, et al. Detecting and Mitigating Poisoning Attacks in Federated Learning Using Generative Adversarial Networks[J]. Concurrency and Computation:Practice and Experience, 2022, 34(7):1-12.
|
[15] |
顾兆军, 刘婷婷, 隋翯. 一种ICS异常检测的优化GAN模型[J]. 西安电子科技大学学报, 2022, 49(2):172-181.
|
|
GU Zhaojun, LIU Tingting, SUI He. Latent Feature Reconstruction Generative GAN Model for ICS Anomaly Detection[J]. Journal of Xidian University, 2022, 49(2):172-181.
|
[16] |
CAO X, FANG M, LIU J, et al. FLTrust:Byzantine-Robust Federated Learning via Trust Bootstrapping[C]// Network and Distributed Systems Security (NDSS) Symposium 2021. San Diego: NDSS, 2021:1-18.
|
[17] |
邬开俊, 梅源. VAE-Fuse:一种无监督的多聚焦融合模型[J]. 西安电子科技大学学报, 2022, 49(6):129-138.
|
|
WU Kaijun, MEI Yuan. VAE-Fuse:An Unsupervised Multi-Focus Fusion Model[J]. Journal of Xidian University, 2022, 49(6):129-138.
|
[18] |
陈永, 牛凯玉, 康婕. LSTM循环神经网络的高速铁路越区切换算法[J]. 西安电子科技大学学报, 2023, 50(1):76-84.
|
|
CHENG Yong, NIU Kaiyu, KANG Jie. Handover Algorithm fora High-Speed Railway Based on the LSTM Recurrent Neural Network[J]. Journal of Xidian University, 2023, 50(1):76-84.
|
[19] |
黄茜茜. 基于差分隐私保护的不均衡数据联邦学习方法[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
[20] |
BLANCHARD P, MAHDI E, GUERRAOUI R, et al. Machine Learning with Adversaries:Byzantine Tolerant Gradient Descent[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017:118-128.
|
[21] |
YIN D, CHEN Y, RAMCHANDRAN K, et al. Byzantine-Robust Distributed Learning:Towards Optimal Statistical Rates (2018)[C/OL].[2018-03-05]. https://arxiv.org/abs/1803.01498.
|
[22] |
SO J, GÜLER B, AVESTIMEHR A S. Byzantine-Resilient Secure Federated Learning[J]. IEEE Journal on Selected Areas in Communications, 2021: 39(7):2168-2181.
doi: 10.1109/JSAC.2020.3041404
|
[23] |
DONG Y, CHEN X, LI K, et al. FLOD:Oblivious Defender for Private Byzantine-Robust Federated Learning with Dishonest-Majority[C]// Computer Security-ESORICS 2021:26th European Symposium on Research in Computer Security.Heidelberg:Springer, 2021:497-518.
|