[1] |
谭豪, 申兵, 苗旭东, 等. Gimli认证加密方案的不可能差分分析[J]. 西安电子科技大学学报, 2022, 49(5):213-220.
|
|
TAN Hao, SHEN Bing, MIAO Xudong, et al. Impossible Differential Cryptanalysis of the Gimli Authenticated Encryption Scheme[J]. Journal of Xidian University, 2022, 49(5):213-220.
|
[2] |
刘亚, 宫佳欣, 赵逢禹. 加密算法Simpira v2的不可能差分攻击[J]. 西安电子科技大学学报, 2022, 49(5):201-212.
|
|
LIU Ya, GONG Jiaxin, ZHAO Fengyu. Impossible Differential Attack on the Encryption Algorithm Simpira v2[J]. Journal of Xidian University, 2022, 49(5):201-212.
|
[3] |
Google. Transparencyreport (2022)[EB/OL].[2022-09-24]. https://transparencyreport.google.com/https/overview.
|
[4] |
鲁刚, 郭荣华, 周颖, 等. 恶意流量特征提取综述[J]. 信息网络安全, 2018, 2018(9):1-9.
|
|
LU Gang, GUO Ronghua, ZHOU Ying, et al. Review of Malicious Traffic Feature Extraction[J]. Netinfo Security, 2018, 2018(9):1-9.
|
[5] |
GALLAGHER S. Nearly Half of Malware Now Use TLS to Conceal Communications (2022)[EB/OL].[2022-09-24]. https://news.sophos.com/en-us/2021/04/21/nearly-half-of-malware-now-use-tls-to-conceal-communications/.
|
[6] |
WANG Q, LI W, BAO H, et al. High-Efficient and Few-Shot Adaptive Encrypted Traffic Classification with Deep Tree[C]// MILCOM 2022-2022 IEEE Military Communications Conference (MILCOM).Piscataway:IEEE, 2022:458-463.
|
[7] |
FANG Y, XU Y, HUANG C, et al. Against Malicious SSL/TLS Encryption:Identify Malicious Traffic Based on Random Forest[C]// Fourth International Congress on Information and Communication Technology.Berlin:Springer, 2020:99-115.
|
[8] |
康鹏, 杨文忠, 马红桥. TLS协议恶意加密流量识别研究综述[J]. 计算机工程与应用, 2022, 58(12) :1-11.
doi: 10.3778/j.issn.1002-8331.2110-0029
|
|
KANG Peng, YANG Wenzhong, MA Hongqiao. TLS Malicious Encrypted Traffic Identification Research[J]. Computer Engineering and Applications, 2022, 58(12):1-11.
doi: 10.3778/j.issn.1002-8331.2110-0029
|
[9] |
LI W, ZHANG X Y, BAO H, et al. Robust Network Traffic Identification with Graph Matching[J]. Computer Networks, 2022, 218:109368.
doi: 10.1016/j.comnet.2022.109368
|
[10] |
LI W, ZHANG X Y, BAO H, et al. ProGraph:Robust Network Traffic Identification with Graph Propagation[J]. IEEE/ACM Transactions on Networking, 2022:1-15.
|
[11] |
曾勇, 吴正远, 董丽华, 等. 加密流量中的恶意流量识别技术[J]. 西安电子科技大学学报, 2021, 48(3):170-187.
|
|
ZENG Yong, WU Zhengyuan, DONG Lihua, et al. Research on Malicious Traffic Identification Technology in Encrypted Traffic[J]. Journal of Xidian University, 2021, 48(3):170-187.
|
[12] |
KESHKEH K, JANTAN A, ALIEYAN K, et al. A Review on TLS Encryption Malware Detection:TLS Features,Machine Learning Usage,and Future Directions[C]// International Conference on Advances in Cyber Security.Berlin:Springer, 2021:213-229.
|
[13] |
邹洁, 朱国胜, 祁小云, 等. 基于C4.5决策树的HTTPS加密流量分类方法[J]. 计算机科学, 2020, 47(S1):381-385.
|
|
ZOU Jie, ZHU Guosheng, QI Xiaoyun, et al. HTTPS Encrypted Traffic Classification Method Based on C4.5 Decision Tree[J]. Computer Science, 2020, 47(S1):381-385.
|
[14] |
TORROLEDO I, CAMACHO L D, BAHNSEN A C. Hunting Malicious TLS Certificates with Deep Neural Networks[C]// Proceedings of the 11th ACM workshop on Artificial Intelligence and Security. New York: ACM, 2018:64-73.
|
[15] |
YU B, FANG Y, YANG Q, et al. A Survey of Malware Behavior Description and Analysis[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(5):583-603.
|
[16] |
HUO Y H, ZHAO F Q, ZHANG H S, et al. AS-DMF:A Lightweight Malware Encrypted Traffic Detection Method Based on Active Learning and Feature Selection[J]. Wireless Communications and Mobile Computing, 2022:1-14.
|
[17] |
VAN ENGELEN J E, HOOS H H. A Survey on Semi-Supervised Learning[J]. Machine Learning, 2020, 109(2):373-440.
doi: 10.1007/s10994-019-05855-6
|
[18] |
卢宛芝, 丁要军. 基于半监督多视图特征协同训练的网络恶意流量识别方法[J]. 通信技术, 2022, 55(4):513-518.
|
|
LU Wanzhi, DING Yaojun. Network Malicious Traffic Identification Method Based on Semi-supervised Muiti-View Feature Co-Training[J]. Communication Technology, 2022, 55(4):513-518.
|
[19] |
ABDELGAYED T S, MORSI W G, SIDHU T S. Fault Detection and Classification Based on Co-Training of Semisupervised Machine Learning[J]. IEEE Transactions on Industrial Electronics, 2017, 65(2):1595-1605.
doi: 10.1109/TIE.41
|
[20] |
ILIYASU A S, DENG H. Semi-Supervised Encrypted Traffic Classification with Deep Convolutional Generative Adversarial Networks[J]. IEEE Access, 2019, 8:118-216.
doi: 10.1109/Access.6287639
|
[21] |
霍跃华, 赵法起, 吴文昊. 多特征融合的煤矿网络加密恶意流量检测方法[J]. 工矿自动化, 2022, 48(7):142-148.
|
|
HUO Yuehua, ZHAO Faqi, WU Wenhao. Multi-Feature Fusion Based Encrypted Malicious Traffic Detection Method for Coal Mine Network[J]. Journal of Mine Automation, 2022 48(7):142-148.
|
[22] |
PAXSON V. Bro:A System for Detecting Network Intruders in Real-Time[J]. Computer networks, 1999, 31(23-24):2435-2463.
doi: 10.1016/S1389-1286(99)00112-7
|
[23] |
ANDERSON B, PAUL S, MCGREW D. Deciphering Malware’s Use of TLS (without Decryption)[J]. Journal of Computer Virology and Hacking Techniques, 2018, 14(3):195-211.
doi: 10.1007/s11416-017-0306-6
|
[24] |
霍跃华, 赵法起. 基于stacking和多特征融合的加密恶意流量检测研究(2022)[J/OL].[2022-09-24].https://doi.org/10.19678/j.issn.1000-3428.0064805.
|
|
HUO Yuehua, ZHAO Faqi. Analysis of Encrypted Malicious Traffic Detection Based on Stacking and Muti-Feature Fusion (2022)[J/OL].[2022-09-24].https://doi.org/10.19678/j.issn.1000-3428.0064805.
|
[25] |
YU T, ZOU F, LI L, et al. An Encrypted Malicious Traffic Detection System Based on Neural Network[C]// 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC).Piscataway:IEEE, 2019:62-70.
|
[26] |
黄欣辰, 皋军, 黄豪杰. 基于PCA降维的成对约束半监督聚类集成[J]. 计算机与现代化, 2021, 2021(1):94-99.
|
|
HUANG Xinchen, GAO Jun, HUANG Haojie. Semi-Supervised Clustering Ensemble with Pairwise Constraints Based on PCA Demension Reduction[J]. Computer and Modernization, 2021, 2021(1):94-99.
|