西安电子科技大学学报 ›› 2023, Vol. 50 ›› Issue (4): 157-169.doi: 10.19665/j.issn1001-2400.2023.04.016

• 网络空间安全专栏 • 上一篇    下一篇

基于隐写噪声深度提取的JPEG图像隐写分析

范文同1,2,3(),李震宇1,2,3(),张涛4(),罗向阳1,2,3()   

  1. 1.中国人民解放军战略支援部队信息工程大学 网络空间安全学院,河南 郑州 450001
    2.数学工程与先进计算国家重点实验室,河南 郑州 450001
    3.河南省网络空间态势感知重点实验室,河南 郑州 450001
    4.常熟理工学院 计算机科学与工程学院,江苏 常熟 215500
  • 收稿日期:2023-01-15 出版日期:2023-08-20 发布日期:2023-10-17
  • 通讯作者: 李震宇
  • 作者简介:范文同(1998—),男,中国人民解放军战略支援部队信息工程大学硕士研究生,E-mail:fftxxgc@sina.com;|张涛(1977—),男,教授,E-mail:tzhang@cslg.edu.cn;|罗向阳(1978—),男,教授,E-mail:luoxy_ieu@sina.com
  • 基金资助:
    国家自然科学基金(U1804263);国家自然科学基金(62072057);国家自然科学基金(62172435);国家自然科学基金(62002387);中原科技创新领军人才项目(214200510019)

JPEG image steganalysis based on deep extraction of stego noise

FAN Wentong1,2,3(),LI Zhenyu1,2,3(),ZHANG Tao4(),LUO Xiangyang1,2,3()   

  1. 1. PLA Strategic Support Force Information Engineering University,Zhengzhou 450001,China
    2. State Key Laboratory of Mathematical Engineering and Advanced Computing,Zhengzhou 450001,China
    3. Key Laboratory of Cyberspace Situation Awareness of Henan Province,Zhengzhou 450001,China
    4. School of Computer Science and Engineering,Changshu Institute of Technology,Changshu 215500,China
  • Received:2023-01-15 Online:2023-08-20 Published:2023-10-17
  • Contact: Zhenyu LI

摘要:

当前基于深度学习的隐写分析方法检测效果受限于其获取的隐写噪声的精确度。为了获取更加准确的隐写噪声,提高隐写分析的准确率,提出了一种基于隐写噪声深度提取的JPEG图像隐写分析方法。首先,设计了隐写噪声深度提取网络,通过有监督的学习方式使网络能够准确地提取载秘图像中包含的隐写噪声;而后,利用设计的模型评价指标选择最优的隐写噪声提取网络;最后,根据隐写噪声的特点设计分类网络,实现载秘图像的检测,并将分类网络与隐写噪声深度提取网络融合得到最终的检测网络。实验在两个大规模的公开数据集(BOSSBase和BOWS2)上进行,针对两种自适应JPEG图像隐写方法(J-UNIWARD和UED-JC)在多个不同嵌入率和图像质量因子条件下构建的载秘图像进行检测。实验结果表明,该方法的检测准确率较性能第二的方法分别提高了约2.22%和0.85%。文中方法通过提取更加准确的隐写噪声,减少了图像内容对隐写分析带来的影响,相比于典型的基于深度学习的JPEG图像隐写分析方法,取得了更好的检测效果。

关键词: JPEG图像隐写分析, 隐写噪声, 卷积神经网络, 深度学习

Abstract:

The performance of steganalysis is limited by the quality of the stego noise obtained by current deep learning-based methods.In order to obtain more accurate stego noise and improve the accuracy of steganalysis,a new method is proposed based on deep extraction of stego noise for JPEG image steganalysis.First,a stego noise deep extraction network is formulated to precisely extract the stego noise from stego images with the supervised trained network.Then,a model evaluation index is proposed to select the most effective network for stego noise extraction.Finally,according to the characteristics of stego noise,a classification network is designed to detect the stego images,which is then combined with the stego noise extraction network to obtain the final detection network.In the steganalysis experiment,two large-scale publicly available datasets(BOSSBase and BOWS2)are used to construct the stego images by two adaptive JPEG image steganography methods (J-UNIWARD and UED-JC) under several embedding rates and quality factors.Experimental results show that the detection accuracy of the method proposed in this article has been improved by up to 2.22% and 0.85%,respectively compared to the second-best performing method.By extracting more accurate stego noise and reducing the impact of image content on steganalysis,the proposed method achieves a better detection performance compared to typical deep learning-based JPEG steganalysis methods.

Key words: JPEG image steganalysis, stego noise, convolutional neural network, deep learning

中图分类号: 

  • TP391.4