[1] |
KIM Y. Convolutional Neural Networks for Sentence Classification (2014)[C/OL].[2014-08-25]. https://arxiv.org/abs/1408.5882v2.
|
[2] |
ANDREWS M, WITTEVEEN S. Unsupervised Natural Question Answering with a Small Model (2019)[C/OL].[2019-11-19]. https://arxiv.org/abs/1911.08340v1.
|
[3] |
MANERIKERP, HE Y, PARTHASARATHY S. SYSML:StYlometry with Structure and Multitask Learning:Implications for Darknet Forum Migrant Analysis (2021)[J/OL].[2021-04-01]. https://arxiv.org/abs/2104.00764.
|
[4] |
BELLO I, ZOPH B, LE Q, et al. Attention Augmented Convolutional Networks[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV).Piscataway:IEEE, 2019:3285-3294.
|
[5] |
STANOVSKY G, GRUHL D, MENDES P. Recognizing Mentions of Adverse Drug Reaction in Social Media Using Knowledge-Infused Recurrent Models[C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics.Stroudsburg:ACL, 2017:142-151.
|
[6] |
SEBASTIAN R, PARSA G, JOHN G B. Character-Level and Multi-Channel Convolutional Neural Networks for Large-Scale Authorship Attribution (2016)[J/OL].[2016-09-21]. https://arxiv.org/abs/1609.06686.
|
[7] |
PRASHA S, SEBASTIAN S, FABIO G, et al. Convolutional Neural Networks for Authorship Attribution of Short Texts[C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics.Stroudsburg:ACL, 2017:669-674.
|
[8] |
RICO S, BARRY H, ALEXANDRA B. Neural Machine Translation of Rare Words with Subword Units[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.Stroudsburg:ACL, 2016:1715-1725.
|
[9] |
PIOTR G, EWA J, MACIEJ P. Sparse Coding in Authorship Attribution for Polish Tweets[C]// Proceedings of the International Conference on Recent Advances in Natural Language Processing.Stroudsburg:ACL, 2019:409-417.
|
[10] |
MOHAMMADREZA E, MIHAI S, SAGAR S, et al. Detecting Cyber Threats in Non-English Dark Net Markets:A Crosslingual Transfer Learning Approach[C]// 2018 IEEE International Conference on Intelligence and Security Informatics (ISI).Piscataway:IEEE, 2018:85-90.
|
[11] |
ASHISH V, NOAM S, NIKI P, et al. Attention is All You Need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017:6000-6010.
|
[12] |
DZMITRY B, KYUNGHYUN C, YOSHUA B. Neural Machine Translation by Jointly Learning to Align and Translate (2014)[C/OL].[2014-09-01]. https://arxiv.org/abs/1409.0473.
|
[13] |
AADAMS W Y, DAVID D, MINH-THANG L, et al. QAnet:Combining Local Convolution with Global Self-Attention for Reading Comprehension (2018)[C/OL].[2018-04-23]. https://arxiv.org/abs/1804.09541.
|
[14] |
DAVID R.S, CHEN L, QUOC V. The Evolved Transformer (2019)[C/OL].[2019-01-30]. https://arxiv.org/abs/1901.11117.
|
[15] |
JIE H, LI S, SAMUEL A, et al. Gather-Excite:Exploiting Feature Context in Convolutional Neural Networks[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York: ACM, 2018:9423-9433.
|
[16] |
JIE H, LI S, GANG S. Squeeze-and-Excitation Networks[C]// Proceedings of the IEEE conference on computer vision and pattern recognition.Piscataway:IEEE, 2018:7132-7141.
|
[17] |
JONGCHAN P, SANGHYUN W, JOON-YOUNG L, et al. Bam:Bottleneck Attention Module (2018)[C/OL].[2018-07-17]. https://arxiv.org/abs/1807.06514v1.
|
[18] |
SANGHYUN W, JONGCHAN P, JOON-YOUNG L, et al. Cbam:Convolutional Block Attention Module[C]// Proceedings of the European Conference on Computer Vision (ECCV).Heidelberg:Springer, 2018:3-19.
|
[19] |
WANG X L, ROSS G, ABHINAV G, et al. Non-Local Neural Networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:7794-7803.
|
[20] |
FAN Y, ZHANG Y, YE Y, et al. AutomaticOpioid User Detection from Twitter:Transductive Ensemble Built on Different Metagraph Based Similarities over Heterogeneous Information Network[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. New York: ACM, 2018:3357-3363.
|
[21] |
HOU S, YE Y, SONG Y, et al. Hindroid:AnIntelligent Android Malware Detection System Based on Structured Heterogeneous Information network[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017:1507-1515.
|
[22] |
FU T, LEE W, LEI Z. 2017.Hin2vec:ExploreMeta-Paths in Heterogeneous Information Networks for Representation Learning[C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. New York: ACM, 2017:1797-1806.
|
[23] |
DONG Y, NITESH V.C, ANANTHRAM S. Metapath2vec:Scalable Representation Learning for heterogeneous Networks[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mning. New York: ACM, 2017:135-144.
|
[24] |
ZHANG Y, FAN Y, SONG W, et al. Your Style Your Identity:Leveraging Writing and Photography Styles for Drug Trafficker Identification in Darknet Markets over Attributed Heterogeneous Information Network[C]// International World Wide Web Conference Committee. New York: ACM, 2019:3448-3454.
|
[25] |
RAMNATH K, SHWETA Y, RAMINTA D, et al. Edarkfind:Unsupervised Multi-View Learning for Sybil Account Detection[C]// International World Wide Web Conference Committee. New York: ACM, 2020:1955-1965.
|
[26] |
NICHOLAS A, MARCUS B. LearningInvariant Representations of Social Media Users (2019)[C/OL].[2019-10-11]. https://arxiv.org/abs/1910.04979.
|
[27] |
JACOB D, CHANG M, KENTON L, et al. BERT:Pre-Training of Deep Bidirectional Transformers for Language Understanding (2018)[C/OL].[2018-10-11]. https://arxiv.org/abs/1810.04805.
|