[1] |
CUI J, ZHU H, DENG H, et al. FeARH:Federated Machine Learningwith Anonymous Random Hybridization on Electronic Medical Records[J]. Journal of Biomedical Informatics, 2021, 117:103735.
doi: 10.1016/j.jbi.2021.103735
|
[2] |
QIAN F, ZHANG A. The Valueof Federated Learning During and Post-COVID-19[J]. International Journal for Quality in Health Care, 2021(1):1.
|
[3] |
李雪莲, 张夏川, 高军涛, 等. 支持属性和代理重加密的区块链数据共享方案[J]. 西安电子科技大学学报, 2022, 49(1):1-16.
|
|
LI Xuelian, ZHANG Xiachuan, GAO Juntao, et al. Blockchain Data Sharing Scheme Supporting Attribute and Proxy Re-Encryption[J]. Journal of Xidian University, 2022, 49(1):1-16.
|
[4] |
SADILEK A, LIU L, NGUYEN D, et al. Privacy-First Health Researchwith Federated Learning[J]. NPJ Digital Medicine, 2021, 4(1):1-8.
doi: 10.1038/s41746-020-00373-5
|
[5] |
YIN L, FENG J, XUN H, et al. A Privacy-Preserving Federated Learning for Multiparty Data Sharing in Social Iots[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(3):2706-2718.
doi: 10.1109/TNSE.2021.3074185
|
[6] |
刘艺璇, 陈红, 刘宇涵, 等. 联邦学习中的隐私保护技术[J]. 软件学报, 2022, 33(3):1057-1092.
|
|
LIU Yixuan, CHEN Hong, LIU Yuhan, et al. Privacy-Preserving Techniques in Federated Learning[J]. Journal of Software, 2022, 33(3):1057-1092.
|
[7] |
李尤慧子, 殷昱煜, 高洪皓, 等. 面向隐私保护的非聚合式数据共享综述[J]. 通信学报, 2021, 42(6):195-212.
doi: 10.11959/j.issn.1000-436x.2021120
|
|
LI Youhuizi, YIN Yuyu, GAO Honghao, et al. Survey on Privacy Protection in Non-Aggregated Data Sharing[J] Journal of Communication, 2021, 42(6):195-212.
doi: 10.11959/j.issn.1000-436x.2021120
|
[8] |
ZERKA F, BARAKAT S, WALSH S, et al. Systematic Review of Privacy-Preserving Distributed Machine Learning from Federated Databases in Health Care[J]. JCO Clinical Cancer Informatics, 2020, 4(4):184-200.
|
[9] |
MOTHUKURI V, PARIZI R M, POURIYEH S, et al. A Survey on Security and Privacy of Federated Learning[J]. Future Generation Computer Systems, 2021, 115:619-640.
doi: 10.1016/j.future.2020.10.007
|
[10] |
KAIROUZ P, MCMAHAN H B, AVENT B, et al. Advances and Open Problems in Federated Learning[M]. Hanover: Now Foundations and Trends, 2021.
|
[11] |
ZHANG J, CHEN B, CHENG X, et al. Poisongan:Generative Poisoning Attacks Against Federated Learning in Edge Computing Systems[J]. IEEE Internet of Things Journal, 2020, 8(5):3310-3322.
doi: 10.1109/JIoT.6488907
|
[12] |
LI Q, WEN Z, WU Z, et al. A Surveyon Federated Learning Systems:Vision,Hype and Reality for Data Privacy and Protection[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(4):3347-3366.
doi: 10.1109/TKDE.2021.3124599
|
[13] |
李瑞琪, 贾春福, 王雅飞. 基于NTRU的多密钥同态代理重加密方案及其应用[J]. 通信学报, 2021, 42(3):11-22.
doi: 10.11959/j.issn.1000-436x.2021023
|
|
LI Ruiqi, JIA Chunfu, WANG Yafei. Multi-Key Homomorphic Proxy Re-Encryption Scheme Based on NTRU and Its Application[J]. Journal of Communication, 2021, 42(3):11-22.
doi: 10.11959/j.issn.1000-436x.2021023
|
[14] |
徐花, 田有亮. 差分隐私下的权重社交网络隐私保护[J]. 西安电子科技大学学报, 2022, 49(1):17-25.
|
|
XU Hua, TIAN Youliang.Protection of Privacy of the Weighted Social Network Under Differential Privacy[J]. Journal of Xidian University, 2022, 49(1):17-25.
|
[15] |
FANG C, GUO Y, WANG N, et al. Highly Efficient Federated Learning with Strong Privacy Preservation in Cloud Computing[J]. Computers & Security, 2020, 96:101889.
doi: 10.1016/j.cose.2020.101889
|
[16] |
KU H, SUSILO W, ZHANG Y, et al. Privacy-Preserving Federated Learningin Medical Diagnosis with Homomorphic Re-Encryption[J]. Computer Standards & Interfaces, 2022, 80:103583.
doi: 10.1016/j.csi.2021.103583
|
[17] |
JIANG B, LI J, WANG H, et al. Privacy-Preserving Federated Learning for Industrial Edge Computing via Hybrid Differential Privacy and Adaptive Compression[J]. IEEE Transactions on Industrial Informatics, 2023, 19(2):1136-1144.
doi: 10.1109/TII.2021.3131175
|
[18] |
晏燕, 董卓越, 徐飞, 等. 一种Hilbert编码的本地化位置隐私保护方法[J]. 西安电子科技大学学报, 2023, 50(2):147-160.
|
|
YAN Yan, DONG Zhuoyue, XU Fei, et al. Localized Location Privacy Protection Method Using the Hilbert Encoding[J]. Journal of Xidian University, 2023, 50(2):147-160.
|
[19] |
LI T, SAHU A K, TALWALKA R, et al. Federated Learning:Challenges,Methods,and Future Directions[J]. IEEE Signal Processing Magazine, 2020, 37(3):50-60.
|
[20] |
ZHOU Y, YE Q, LV J. Communication-Efficient Federated Learning with Compensated Overlap-Fedavg[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 33(1):192-205.
doi: 10.1109/TPDS.2021.3090331
|
[21] |
JIA B, ZHANG X, LIU J, et al. Blockchain-Enabled Federated Learning Data Protection Aggregation Scheme with Differential Privacy and Homomorphic Encryption in IoT[J]. IEEE Transactions on Industrial Informatics, 2021, 18(6):4049-4058.
doi: 10.1109/TII.2021.3085960
|
[22] |
KUMARI K A, SHARMA A, CHAKRABORTY C, et al. Preserving Health Care Data Security and Privacy Using Carmichael’s Theorem-Based Homomorphic Encryption and Modified Enhanced Homomorphic Encryption Schemes in Edge Computing Systems[J]. Big Data, 2022, 10(1):1-17.
doi: 10.1089/big.2021.0012
|
[23] |
SUN J, LI A, WANG B, et al. Soteria:Provable Defense Against Privacy Leakage in Federated Learning from Representation Perspective[C]//In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2021:9311-9319.
|
[24] |
LI J, KUANG X, LIN S, et al. Privacy Preservation for Machine Learning Training and Classification Based on Homomorphic Encryption Schemes[J]. Information Sciences, 2020, 526:166-179.
doi: 10.1016/j.ins.2020.03.041
|
[25] |
DWIVEDI A D, SINGH R, GHOSH U, et al. Privacy Preserving Authentication System Based on Non-Interactive Zero Knowledge Proof Suitable for Internet of Things[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13:4639-4649.
doi: 10.1007/s12652-021-03459-4
|
[26] |
MAJOR W, BUCHANAN W, AHMAD J, et al. An Authentication Protocol Based on Chaos and Zero Knowledge Proof[J]. Nonlinear Dynamics 2020, 99(4):3065-3087.
doi: 10.1007/s11071-020-05463-3
|
[27] |
ZHANG C, LI S, XIA J, et al. {BatchCrypt}:Efficient Homomorphic Encryption for {Cross-Silo} Federated Learning[C]//2020 USENIX Annual Technical Conference (USENIX ATC 20).Berkeley:USENIX, 2020:493-506.
|
[28] |
PARK J, HAN D J, CHOI M, et al. Sageflow:Robust Federated Learning Against Both Stragglers and Adversaries[J]. Advances in Neural Information Processing Systems, 2021, 34:840-851.
|