西安电子科技大学学报 ›› 2024, Vol. 51 ›› Issue (2): 182-195.doi: 10.19665/j.issn1001-2400.20230211
收稿日期:
2022-11-28
出版日期:
2024-04-20
发布日期:
2023-10-12
通讯作者:
孙芳林(1998—),女,兰州交通大学硕士研究生,E-mail:ntusfl@163.com作者简介:
翟凤文(1979—),女,副教授,E-mail:zhaifw@mail.lzjtu.cn;基金资助:
ZHAI Fengwen(), SUN Fanglin(), JIN Jing()
Received:
2022-11-28
Online:
2024-04-20
Published:
2023-10-12
摘要:
在通过深度学习模型进行抑郁症类脑电信号分析时,针对单一尺度的卷积存在特征提取不充分的问题和卷积神经网络在感知脑电信号全局依赖性方面的局限性,分别设计了多尺度动态卷积网络模块和门控Transformer编码器模块,并与时间卷积网络相结合,提出了混合网络模型(MGTTCNet)进行抑郁症患者和健康对照组的脑电信号分类。该模型首先通过多尺度动态卷积从空间域和频率域捕捉脑电信号的多尺度时频信息。其次通过门控Transformer编码器学习脑电信号中的全局依赖关系,其利用多头注意力机制有效增强网络表达相关脑电信号特征的能力。之后利用时间卷积网络提取脑电信号可用的时间特征,最后将提取的抽象特征输入到分类模块进行分类。在公开数据集MODMA上用留出法和十折交叉验证法对提出模型进行实验验证,分别取得了约98.51%和98.53%的分类准确率,相较于基线单尺度模型EEGNet,分类准确率分别提升了约1.89%和1.93%,F1值分别提升了约2.05%和2.08%,kappa系数值分别提高了约0.038 1和0.038 5;同时消融实验验证了文中设计的各个模块的有效性。
中图分类号:
翟凤文, 孙芳林, 金静. 多尺度卷积结合Transformer的抑郁脑电分类研究[J]. 西安电子科技大学学报, 2024, 51(2): 182-195.
ZHAI Fengwen, SUN Fanglin, JIN Jing. Study of EEG classification of depression by multi-scale convolution combined with the Transformer[J]. Journal of Xidian University, 2024, 51(2): 182-195.
表1
Hold-out验证下的消融实验研究"
验证方法 | 模型 | Acc/% | F1/% | Sens/% | Spec/% | kappa |
---|---|---|---|---|---|---|
SiNet | 90.87 | 90.24 | 89.91 | 91.72 | 0.816 7 | |
MsNet | 95.33 | 95.08 | 96.11 | 94.65 | 0.906 5 | |
Hold-out | MGTNet | 96.55 | 96.33 | 96.40 | 96.69 | 0.930 8 |
MTCNet | 96.89 | 96.74 | 98.27 | 95.67 | 0.937 7 | |
MGTTCNet | 98.51 | 98.42 | 98.85 | 98.22 | 0.970 2 | |
MTCNGTNet | 97.63 | 97.45 | 96.54 | 98.60 | 0.952 4 |
表2
10-Fold CV验证下的消融实验研究"
验证方法 | 模型 | Acc/% | F1/% | Sens/% | Spec/% | kappa |
---|---|---|---|---|---|---|
SiNet | 92.62±1.37 | 92.21±1.49 | 92.51±2.36 | 92.72±1.63 | 0.852 0±0.027 6 | |
MsNet | 94.76±0.70 | 94.43±0.78 | 94.09±2.00 | 95.36±1.56 | 0.894 8±0.014 1 | |
10-Fold CV | MGTNet | 96.10±0.59 | 95.91±0.62 | 96.69±1.21 | 95.58±1.19 | 0.921 9±0.011 8 |
MTCNet | 97.44±0.37 | 97.29±0.39 | 97.19±0.58 | 97.67±0.62 | 0.948 7±0.007 5 | |
MGTTCNet | 98.53±0.40 | 98.45±0.42 | 98.73±0.51 | 98.36±0.66 | 0.970 6±0.008 1 | |
MTCNGTNet | 98.24±0.48 | 98.14±0.45 | 98.28±0.49 | 98.20±0.58 | 0.964 7±0.007 2 |
表4
10-Fold CV验证下的不同频带分类结果"
验证方法 | 频带 | Acc/% | F1/% | Sens/% | Spec/% | kappa |
---|---|---|---|---|---|---|
delta | 89.95±0.48 | 89.19±0.52 | 87.69±2.54 | 91.97±2.53 | 0.798 0±0.009 4 | |
theta | 94.10±0.80 | 93.70±0.87 | 93.24±1.67 | 94.82±1.29 | 0.881 6±0.016 1 | |
10-Fold CV | alpha | 96.79±0.41 | 96.81±0.44 | 96.44±0.76 | 97.49±0.66 | 0.939 6±0.008 2 |
beta | 97.62±0.35 | 97.53±0.35 | 97.71±0.82 | 97.54±0.95 | 0.952 4±0.006 9 | |
gamma | 97.21±0.34 | 97.07±0.36 | 96.18±0.75 | 97.81±0.73 | 0.944 1±0.006 9 |
表5
Hold-out验证下的实验结果对比"
验证方法 | 模型名称 | Acc/% | F1/% | Sens/% | Spec/% | kappa |
---|---|---|---|---|---|---|
EEGNet-8,2[ | 96.62 | 96.37 | 95.68 | 97.45 | 0.932 1 | |
EEG-TCNet[ | 94.86 | 94.48 | 93.80 | 95.80 | 0.896 8 | |
Hold-out | EEG-Inception[ | 95.27 | 94.88 | 93.37 | 96.94 | 0.904 8 |
EEG-ITNet[ | 91.41 | 91.24 | 95.24 | 88.03 | 0.828 5 | |
MGTTCNet | 98.51 | 98.42 | 98.85 | 98.22 | 0.970 2 |
表6
10-Fold CV验证下的实验结果对比"
验证方法 | 模型名称 | Acc/% | F1/% | Sens/% | Spec/% | kappa |
---|---|---|---|---|---|---|
EEGNet-8,2[ | 96.60±0.49 | 96.41±0.52 | 96.10±0.77 | 97.08±0.78 | 0.932 1±0.009 9 | |
EEG-TCNet[ | 96.47±0.39 | 96.28±0.41 | 96.61±0.67 | 96.35±0.79 | 0.929 2±0.007 8 | |
10-Fold CV | EEG-Inception[ | 96.57±0.91 | 96.35±0.96 | 95.79±1.80 | 97.27±1.69 | 0.933 1±0.018 2 |
EEG-ITNet[ | 94.74±0.85 | 94.45±0.87 | 94.62±2.00 | 94.86±2.30 | 0.894 6±0.017 0 | |
MGTTCNet | 98.53±0.40 | 98.45±0.42 | 98.73±0.51 | 98.36±0.66 | 0.970 6±0.008 1 |
表7
同一数据集不同方法的实验结果"
文献 | 年份 | 通道数 | 特征 | 分类模型 | Acc/% | F1/% | Sens/% | Spec/% |
---|---|---|---|---|---|---|---|---|
文献[ | 2020 | 16 | 混合特征 | LR | 82.31 | |||
文献[ | 2020 | 3 | 时域特征 | 1DCNN | 75.29 | 71.60 | 66.20 | 83.00 |
文献[ | 2021 | 128 | 幅值和频率 | ITD+L-TCN | 86.87 | 90.51 | 90.15 | 83.83 |
文献[ | 2022 | 128 | 脑频谱图 | CNN+GRU | 90.62 | 88.79 | 87.81 | 87.48 |
文献[ | 2022 | 73 | 空间-频域特征 | SparNet | 94.37 | 94.40 | 95.07 | 93.66 |
文中 | 2022 | 16 | 自动提取特征 | MGTTCNet | 98.53 | 98.45 | 98.73 | 98.36 |
表10
GLU在特征提取阶段的融合分析"
验证方法 | 模型 | Acc/% | F1/% | kappa | 训练时长/min | 模型参数量 |
---|---|---|---|---|---|---|
M1 | 94.05 | 93.57 | 0.880 3 | 7.875 | 22 326 | |
Hold-out | M2 | 97.30 | 97.11 | 0.945 7 | 8.350 | 22 326 |
MTTCNet | 98.51 | 98.42 | 0.970 2 | 9.035 | 28 146 | |
M1 | 97.07 | 96.91 | 0.941 3 | 81.87 | 22 326 | |
10-Fold CV | M2 | 97.50 | 97.35 | 0.949 9 | 83.12 | 22 326 |
MTTCNet | 98.53 | 98.45 | 0.970 6 | 90.99 | 28 146 |
[1] | KARUNARATHNE A, GUNNELL D, KONRADSEN F, et al. How Many Premature Deaths From Pesticide Suicide Have Occurred Since the Agricultural Green Revolution?[J]. Clinical Toxicology, 2019, 58(4):227-232. |
[2] | FRIEDRICH M J. Depressionis the Leading Cause of Disability Around the World[J]. JAMA, 2017, 317(15):1517. |
[3] | SAEIDI M, KARWOWSKI W, FARAHANI F, et al. Neural Decoding of EEG Signals with Machine Learning:A Systematic Review[J]. Brain Sciences, 2021(11):1525. |
[4] | SCHIRRMEISTER R, SPRINGENBERG J, FIEDERER L, et al. Deep Learning with Convolutional Neural Networks for EEG Decoding and Visualization[J]. Human Brain Mapping, 2017,38:5391-5420. |
[5] | ACHARYA U, RAJENDRA S, YUKI H, et al. Automated EEG-Based Screening of Depression Using Deep Convolutional Neural Network[J]. Computer Methods and Programs in Biomedicine, 2018,161:103-113. |
[6] | KARAKUS B, YILDIRIM Ö, TALO M, et al. Automated Depression Detection Using Deep Representation and Sequence Learning with EEG Signals[J]. Journal of Medical Systems, 2019,43:1-12. |
[7] | UYULAN Ç, ERGÜZEL T, et al. UNUBOLH, Major Depressive Disorder Classification Based on Different Convolutional Neural Network Models:Deep Learning Approach[J]. Clinical EEG and Neuroscience, 2020,52:38-51. |
[8] | DAN Y, ZHAO L L, SONG X W, et al. Automated Detection of Clinical Depression Based on Convolution Neural Network Model[J]. Biomedical Engineering/Biomedizinische Technik, 2022,67:131-142. |
[9] | LAWHERN V J, SOLON A J, WAYTOWICH N R, et al. EEGNet:A Compact Convolutional Network for EEG-Based Brain-Computer Interfaces[J]. Journal of Neural Engineering, 2018, 15(5):1-17. |
[10] | LIU W, JIA K B, WANG Z Z, et al. A Depression Prediction Algorithm Based on Spatiotemporal Feature of EEG Signal[J]. Brain Sciences, 2022, 12(5):630. |
[11] | BAI S, KOLTER J, KOLTUN V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling(2022)[J/OL].[2022-11-13]. https://arxiv.org/abs/1803.01271. |
[12] | INGOLFSSON T M, HERSCHE M, WANG X, et al. EEG-TCNet:An Accurate Temporal Convolutional Network for Embedded Motor-Imagery Brain-Machine Interfaces[C]//Proceedings of the 2020 IEEE International Conference on Systems,Man,and Cybernetics(SMC). Piscataway:IEEE, 2020:2958-2965. |
[13] | HASHEMPOUR S, BOOSTANI R, MOHAMMADI M, et al. Continuous Scoring of Depressionfrom EEG Signals via a Hybrid of Convolutional Neural Networks[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022,30:176-183. |
[14] | 王怡忻, 朱湘茹, 杨利军. 融合共空间模式与脑网络特征的EEG抑郁识别[J]. 计算机工程与应用, 2021, 58(22):150-158. |
WANG Yixin, ZHU Xiangru, YANG Lijun. EEG Depression Recognition Based on Feature Fusion of Common Spatial Pattern and Brain Connectivity[J]. Computer Engineering and Applications, 2021, 58(22):150-158. | |
[15] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All You Need[C]// Proceedings of the in Advances in Neural Information Processing Systems(NIPS). San Diego: NIPS, 2017:5998-6008. |
[16] | SONG Y H, JIA X Y, YANG L, et al. Transformer-Based Spatial-Temporal Feature Learning for EEG Decoding(2022)[J/OL].[2022-11-13]. https://arxiv.org/abs/2106.11170. |
[17] | CASAL R, PERSIA L, SCHLOTTHAUER G. Temporal Convolutional Networks and Transformers for Classifying the Sleep Stage in Awake or Asleep Using Pulse Oximetry Signals[J]. Journal of Computational Science, 2022,59:101544. |
[18] | MA Y, SONG Y, GAO F. A Novel Hybrid CNN-Transformer Model for EEG Motor Imagery Classification[C]// Proceedings of the IEEE International Joint Conference on Neural Network(IJCNN). Piscataway:IEEE, 2022:1-8. |
[19] | 张静, 张雪英, 陈桂军, 等. 结合3D-CNN和频-空注意力机制的EEG情感识别[J]. 西安电子科技大学学报, 2022, 49(3):191-198. |
ZHANG Jing, ZHANG Xueying, CHEN Guijun, et al. EEG Emotion Recognition Based on the 3D-CNN and Spatial-Frequency Attention Mechanism[J]. Journal of Xidian University, 2022, 49(3):191-198. | |
[20] | DAUPHIN Y, FAN A, AULI M, et al. Language Modeling with Gated Convolutional Networks[C]// Proceedings of the 34th International Conference on Machine Learning(ICML). New York: ACM, 2017:933-941. |
[21] | HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway:IEEE, 2016:770-778. |
[22] | CAI H S, YUAN Z Q, GAO Y P, et al. A Multi-Modal Open Dataset for Mental-Disorder Analysis[J]. Scientific Data, 2022,9:178-188. |
[23] | ARBANAS G. Diagnostic and Statistical Manual of Mental Disorders(DSM-5)[J]. Alcoholism and psychiatry research, 2015,51:61-64. |
[24] | SUN S T, LI J X, CHEN H Y, et al. A Study of Resting-State EEG Biomarkers for Depression Recognition(2022)[J/OL].[2022-10-23]. https://arxiv.org/abs/2002.11039. |
[25] | SEAL A, BAJPAI R, AGNIHOTRI J, et al. DeprNet:A Deep Convolution Neural Network Framework for Detecting Depression Using EEG[J]. IEEE Transactions on Instrumentation and Measurement, 2021,70:1-13. |
[26] | JAS M, ENGEMANN D, BEKHTI Y, et al. Autoreject:Automated Artifact Rejection for MEG and EEG Data[J]. Neuroimage, 2016,159:417-429. |
[27] | HASANZADEH F, MOHEBBI M, ROSTAMI R. Graph Theory Analysis of Directed Functional Brain Networks in Major Depressive Disorder Based on EEG Signal[J]. Journal of Neural Engineering, 2020, 17(2):026010. |
[28] | SUN S T, CHEN H Y, SHAO X X, et al. EEG Based Depression Recognition by Combining Functional Brain Network and Traditional Biomarkers[C]//Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine(BIBM). Piscataway:IEEE, 2020:2074-2081. |
[29] | 尚照岩, 乔晓艳. 轻度抑郁症脑电特征分析与机器识别研究[J]. 测试技术学报, 2022, 36(6):498-505. |
SHANG Zhaoyan, QIAO Xiaoyan. Study on Analysis and Recognition of EEG Characteristics of Mild Depression[J]. Journal of Test and Measurement Technology, 2022, 36(6):498-505. | |
[30] | SANTAMARIA V E, MARTINEZ C V, VAQUERIZO V F, et al. EEG-Inception:A Novel Deep Convolutional Neural Network for Assistive ERP-Based Brain-Computer Interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(12):2773-2782. |
[31] | SALAMI A, ANDREU-PEREZ J, GILLMEISTER H. EEG-ITNet:An Explainable Inception Temporal Convolutional Network for Motor Imagery Classification[J]. IEEE Access, 2022,10:36672-36685. |
[32] | ZHANG X W, LI J L, HOU K C, et al. EEG-Based Depression Detection Using Convolutional Neural Network with Demographic Attention Mechanism[C]//Proceedings of the annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBC). Piscataway:IEEE, 2020:128-133. |
[33] | WANG Y X, LIU F R, YANG L J. EEG-Based Depression Recognition Using Intrinsic Time-scale Decomposition and Temporal Convolution Network[C]//Proceedings of the International Conference on Biological Information and Biomedical Engineering(BIBE). New York: ACM, 2021:1-6. |
[34] | DENG X, FAN X F, LV X W, et al. SparNet:A Convolutional Neural Network for EEG Space-Frequency Feature Learning and Depression Discrimination[J]. Frontiers in Neuroinformatics, 2022,16:914823. |
[35] | MAATEN L, HINTON G. Visualizing Data Using t-SNE[J]. Journal of Machine Learning Research, 2008,9:2579-2605. |
[1] | 刘振岩, 张华, 刘勇, 杨立波, 王梦迪. 一种高效的软件模糊测试种子生成方法[J]. 西安电子科技大学学报, 2024, 51(2): 126-136. |
[2] | 丁昕苗, 王家兴, 郭文. 三维注意力增强的暴力场景检测算法[J]. 西安电子科技大学学报, 2024, 51(1): 114-124. |
[3] | 刘博翀, 蔡怀宇, 汪毅, 陈晓冬. 用于语义分割的自监督对比式表征学习[J]. 西安电子科技大学学报, 2024, 51(1): 125-134. |
[4] | 张欣雨, 梁煜, 张为. 融合全局和局部信息的实时烟雾分割算法[J]. 西安电子科技大学学报, 2024, 51(1): 147-156. |
[5] | 熊敬伟, 潘继飞, 毕大平, 杜明洋. 面向雷达行为识别的多尺度卷积注意力网络[J]. 西安电子科技大学学报, 2023, 50(6): 62-74. |
[6] | 侯越,郑鑫,韩成艳. 一种融合纵横时空特征的交通流预测方法[J]. 西安电子科技大学学报, 2023, 50(5): 65-74. |
[7] | 范文同,李震宇,张涛,罗向阳. 基于隐写噪声深度提取的JPEG图像隐写分析[J]. 西安电子科技大学学报, 2023, 50(4): 157-169. |
[8] | 王玉画,高胜,朱建明,黄晨. 自适应差分隐私的高效深度学习方案[J]. 西安电子科技大学学报, 2023, 50(4): 54-64. |
[9] | 王娟,刘子杉,武明虎,陈关海,郭力权. 融合超分辨率重建技术的多尺度目标检测算法[J]. 西安电子科技大学学报, 2023, 50(3): 122-131. |
[10] | 谢雯,滑文强,焦李成,王若男. 采用深度学习的极化SAR地物分类方法综述[J]. 西安电子科技大学学报, 2023, 50(3): 151-170. |
[11] | 周硕,周一青,张冲,邢旺. ResNet使能的OTFS联合信道估计和信号检测[J]. 西安电子科技大学学报, 2023, 50(3): 19-30. |
[12] | 王柯俨,成吉聪,黄诗芮,蔡坤伦,王威然,李云松. 融合上下文感知注意力的低光图像去雾网络[J]. 西安电子科技大学学报, 2023, 50(2): 23-32. |
[13] | 刘博翀, 蔡怀宇, 杨诗远, 李灏天, 汪毅, 陈晓冬. 一种用于自动驾驶场景的轻量级语义分割网络[J]. 西安电子科技大学学报, 2023, 50(1): 118-128. |
[14] | 张强, 杨欣朋, 赵世祥, 卫栋栋, 韩臻. 注意力机制的SAR图像车辆目标检测网络[J]. 西安电子科技大学学报, 2023, 50(1): 36-47. |
[15] | 刘晓雯, 郭继昌, 郑司达. 采用渐进式网络的弱监督显著性目标检测算法[J]. 西安电子科技大学学报, 2023, 50(1): 48-57. |
|