西安电子科技大学学报 ›› 2024, Vol. 51 ›› Issue (2): 182-195.doi: 10.19665/j.issn1001-2400.20230211
收稿日期:
2022-11-28
出版日期:
2024-04-20
发布日期:
2023-10-12
通讯作者:
孙芳林(1998—),女,兰州交通大学硕士研究生,E-mail:ntusfl@163.com作者简介:
翟凤文(1979—),女,副教授,E-mail:zhaifw@mail.lzjtu.cn;基金资助:
ZHAI Fengwen(), SUN Fanglin(
), JIN Jing(
)
Received:
2022-11-28
Online:
2024-04-20
Published:
2023-10-12
摘要:
在通过深度学习模型进行抑郁症类脑电信号分析时,针对单一尺度的卷积存在特征提取不充分的问题和卷积神经网络在感知脑电信号全局依赖性方面的局限性,分别设计了多尺度动态卷积网络模块和门控Transformer编码器模块,并与时间卷积网络相结合,提出了混合网络模型(MGTTCNet)进行抑郁症患者和健康对照组的脑电信号分类。该模型首先通过多尺度动态卷积从空间域和频率域捕捉脑电信号的多尺度时频信息。其次通过门控Transformer编码器学习脑电信号中的全局依赖关系,其利用多头注意力机制有效增强网络表达相关脑电信号特征的能力。之后利用时间卷积网络提取脑电信号可用的时间特征,最后将提取的抽象特征输入到分类模块进行分类。在公开数据集MODMA上用留出法和十折交叉验证法对提出模型进行实验验证,分别取得了约98.51%和98.53%的分类准确率,相较于基线单尺度模型EEGNet,分类准确率分别提升了约1.89%和1.93%,F1值分别提升了约2.05%和2.08%,kappa系数值分别提高了约0.038 1和0.038 5;同时消融实验验证了文中设计的各个模块的有效性。
中图分类号:
翟凤文, 孙芳林, 金静. 多尺度卷积结合Transformer的抑郁脑电分类研究[J]. 西安电子科技大学学报, 2024, 51(2): 182-195.
ZHAI Fengwen, SUN Fanglin, JIN Jing. Study of EEG classification of depression by multi-scale convolution combined with the Transformer[J]. Journal of Xidian University, 2024, 51(2): 182-195.
表1
Hold-out验证下的消融实验研究"
验证方法 | 模型 | Acc/% | F1/% | Sens/% | Spec/% | kappa |
---|---|---|---|---|---|---|
SiNet | 90.87 | 90.24 | 89.91 | 91.72 | 0.816 7 | |
MsNet | 95.33 | 95.08 | 96.11 | 94.65 | 0.906 5 | |
Hold-out | MGTNet | 96.55 | 96.33 | 96.40 | 96.69 | 0.930 8 |
MTCNet | 96.89 | 96.74 | 98.27 | 95.67 | 0.937 7 | |
MGTTCNet | 98.51 | 98.42 | 98.85 | 98.22 | 0.970 2 | |
MTCNGTNet | 97.63 | 97.45 | 96.54 | 98.60 | 0.952 4 |
表2
10-Fold CV验证下的消融实验研究"
验证方法 | 模型 | Acc/% | F1/% | Sens/% | Spec/% | kappa |
---|---|---|---|---|---|---|
SiNet | 92.62±1.37 | 92.21±1.49 | 92.51±2.36 | 92.72±1.63 | 0.852 0±0.027 6 | |
MsNet | 94.76±0.70 | 94.43±0.78 | 94.09±2.00 | 95.36±1.56 | 0.894 8±0.014 1 | |
10-Fold CV | MGTNet | 96.10±0.59 | 95.91±0.62 | 96.69±1.21 | 95.58±1.19 | 0.921 9±0.011 8 |
MTCNet | 97.44±0.37 | 97.29±0.39 | 97.19±0.58 | 97.67±0.62 | 0.948 7±0.007 5 | |
MGTTCNet | 98.53±0.40 | 98.45±0.42 | 98.73±0.51 | 98.36±0.66 | 0.970 6±0.008 1 | |
MTCNGTNet | 98.24±0.48 | 98.14±0.45 | 98.28±0.49 | 98.20±0.58 | 0.964 7±0.007 2 |
表4
10-Fold CV验证下的不同频带分类结果"
验证方法 | 频带 | Acc/% | F1/% | Sens/% | Spec/% | kappa |
---|---|---|---|---|---|---|
delta | 89.95±0.48 | 89.19±0.52 | 87.69±2.54 | 91.97±2.53 | 0.798 0±0.009 4 | |
theta | 94.10±0.80 | 93.70±0.87 | 93.24±1.67 | 94.82±1.29 | 0.881 6±0.016 1 | |
10-Fold CV | alpha | 96.79±0.41 | 96.81±0.44 | 96.44±0.76 | 97.49±0.66 | 0.939 6±0.008 2 |
beta | 97.62±0.35 | 97.53±0.35 | 97.71±0.82 | 97.54±0.95 | 0.952 4±0.006 9 | |
gamma | 97.21±0.34 | 97.07±0.36 | 96.18±0.75 | 97.81±0.73 | 0.944 1±0.006 9 |
表5
Hold-out验证下的实验结果对比"
验证方法 | 模型名称 | Acc/% | F1/% | Sens/% | Spec/% | kappa |
---|---|---|---|---|---|---|
EEGNet-8,2[ | 96.62 | 96.37 | 95.68 | 97.45 | 0.932 1 | |
EEG-TCNet[ | 94.86 | 94.48 | 93.80 | 95.80 | 0.896 8 | |
Hold-out | EEG-Inception[ | 95.27 | 94.88 | 93.37 | 96.94 | 0.904 8 |
EEG-ITNet[ | 91.41 | 91.24 | 95.24 | 88.03 | 0.828 5 | |
MGTTCNet | 98.51 | 98.42 | 98.85 | 98.22 | 0.970 2 |
表6
10-Fold CV验证下的实验结果对比"
验证方法 | 模型名称 | Acc/% | F1/% | Sens/% | Spec/% | kappa |
---|---|---|---|---|---|---|
EEGNet-8,2[ | 96.60±0.49 | 96.41±0.52 | 96.10±0.77 | 97.08±0.78 | 0.932 1±0.009 9 | |
EEG-TCNet[ | 96.47±0.39 | 96.28±0.41 | 96.61±0.67 | 96.35±0.79 | 0.929 2±0.007 8 | |
10-Fold CV | EEG-Inception[ | 96.57±0.91 | 96.35±0.96 | 95.79±1.80 | 97.27±1.69 | 0.933 1±0.018 2 |
EEG-ITNet[ | 94.74±0.85 | 94.45±0.87 | 94.62±2.00 | 94.86±2.30 | 0.894 6±0.017 0 | |
MGTTCNet | 98.53±0.40 | 98.45±0.42 | 98.73±0.51 | 98.36±0.66 | 0.970 6±0.008 1 |
表7
同一数据集不同方法的实验结果"
文献 | 年份 | 通道数 | 特征 | 分类模型 | Acc/% | F1/% | Sens/% | Spec/% |
---|---|---|---|---|---|---|---|---|
文献[ | 2020 | 16 | 混合特征 | LR | 82.31 | |||
文献[ | 2020 | 3 | 时域特征 | 1DCNN | 75.29 | 71.60 | 66.20 | 83.00 |
文献[ | 2021 | 128 | 幅值和频率 | ITD+L-TCN | 86.87 | 90.51 | 90.15 | 83.83 |
文献[ | 2022 | 128 | 脑频谱图 | CNN+GRU | 90.62 | 88.79 | 87.81 | 87.48 |
文献[ | 2022 | 73 | 空间-频域特征 | SparNet | 94.37 | 94.40 | 95.07 | 93.66 |
文中 | 2022 | 16 | 自动提取特征 | MGTTCNet | 98.53 | 98.45 | 98.73 | 98.36 |
表10
GLU在特征提取阶段的融合分析"
验证方法 | 模型 | Acc/% | F1/% | kappa | 训练时长/min | 模型参数量 |
---|---|---|---|---|---|---|
M1 | 94.05 | 93.57 | 0.880 3 | 7.875 | 22 326 | |
Hold-out | M2 | 97.30 | 97.11 | 0.945 7 | 8.350 | 22 326 |
MTTCNet | 98.51 | 98.42 | 0.970 2 | 9.035 | 28 146 | |
M1 | 97.07 | 96.91 | 0.941 3 | 81.87 | 22 326 | |
10-Fold CV | M2 | 97.50 | 97.35 | 0.949 9 | 83.12 | 22 326 |
MTTCNet | 98.53 | 98.45 | 0.970 6 | 90.99 | 28 146 |
[1] | KARUNARATHNE A, GUNNELL D, KONRADSEN F, et al. How Many Premature Deaths From Pesticide Suicide Have Occurred Since the Agricultural Green Revolution?[J]. Clinical Toxicology, 2019, 58(4):227-232. |
[2] | FRIEDRICH M J. Depressionis the Leading Cause of Disability Around the World[J]. JAMA, 2017, 317(15):1517. |
[3] | SAEIDI M, KARWOWSKI W, FARAHANI F, et al. Neural Decoding of EEG Signals with Machine Learning:A Systematic Review[J]. Brain Sciences, 2021(11):1525. |
[4] | SCHIRRMEISTER R, SPRINGENBERG J, FIEDERER L, et al. Deep Learning with Convolutional Neural Networks for EEG Decoding and Visualization[J]. Human Brain Mapping, 2017,38:5391-5420. |
[5] | ACHARYA U, RAJENDRA S, YUKI H, et al. Automated EEG-Based Screening of Depression Using Deep Convolutional Neural Network[J]. Computer Methods and Programs in Biomedicine, 2018,161:103-113. |
[6] | KARAKUS B, YILDIRIM Ö, TALO M, et al. Automated Depression Detection Using Deep Representation and Sequence Learning with EEG Signals[J]. Journal of Medical Systems, 2019,43:1-12. |
[7] | UYULAN Ç, ERGÜZEL T, et al. UNUBOLH, Major Depressive Disorder Classification Based on Different Convolutional Neural Network Models:Deep Learning Approach[J]. Clinical EEG and Neuroscience, 2020,52:38-51. |
[8] | DAN Y, ZHAO L L, SONG X W, et al. Automated Detection of Clinical Depression Based on Convolution Neural Network Model[J]. Biomedical Engineering/Biomedizinische Technik, 2022,67:131-142. |
[9] | LAWHERN V J, SOLON A J, WAYTOWICH N R, et al. EEGNet:A Compact Convolutional Network for EEG-Based Brain-Computer Interfaces[J]. Journal of Neural Engineering, 2018, 15(5):1-17. |
[10] | LIU W, JIA K B, WANG Z Z, et al. A Depression Prediction Algorithm Based on Spatiotemporal Feature of EEG Signal[J]. Brain Sciences, 2022, 12(5):630. |
[11] | BAI S, KOLTER J, KOLTUN V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling(2022)[J/OL].[2022-11-13]. https://arxiv.org/abs/1803.01271. |
[12] | INGOLFSSON T M, HERSCHE M, WANG X, et al. EEG-TCNet:An Accurate Temporal Convolutional Network for Embedded Motor-Imagery Brain-Machine Interfaces[C]//Proceedings of the 2020 IEEE International Conference on Systems,Man,and Cybernetics(SMC). Piscataway:IEEE, 2020:2958-2965. |
[13] | HASHEMPOUR S, BOOSTANI R, MOHAMMADI M, et al. Continuous Scoring of Depressionfrom EEG Signals via a Hybrid of Convolutional Neural Networks[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022,30:176-183. |
[14] | 王怡忻, 朱湘茹, 杨利军. 融合共空间模式与脑网络特征的EEG抑郁识别[J]. 计算机工程与应用, 2021, 58(22):150-158. |
WANG Yixin, ZHU Xiangru, YANG Lijun. EEG Depression Recognition Based on Feature Fusion of Common Spatial Pattern and Brain Connectivity[J]. Computer Engineering and Applications, 2021, 58(22):150-158. | |
[15] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All You Need[C]// Proceedings of the in Advances in Neural Information Processing Systems(NIPS). San Diego: NIPS, 2017:5998-6008. |
[16] | SONG Y H, JIA X Y, YANG L, et al. Transformer-Based Spatial-Temporal Feature Learning for EEG Decoding(2022)[J/OL].[2022-11-13]. https://arxiv.org/abs/2106.11170. |
[17] | CASAL R, PERSIA L, SCHLOTTHAUER G. Temporal Convolutional Networks and Transformers for Classifying the Sleep Stage in Awake or Asleep Using Pulse Oximetry Signals[J]. Journal of Computational Science, 2022,59:101544. |
[18] | MA Y, SONG Y, GAO F. A Novel Hybrid CNN-Transformer Model for EEG Motor Imagery Classification[C]// Proceedings of the IEEE International Joint Conference on Neural Network(IJCNN). Piscataway:IEEE, 2022:1-8. |
[19] | 张静, 张雪英, 陈桂军, 等. 结合3D-CNN和频-空注意力机制的EEG情感识别[J]. 西安电子科技大学学报, 2022, 49(3):191-198. |
ZHANG Jing, ZHANG Xueying, CHEN Guijun, et al. EEG Emotion Recognition Based on the 3D-CNN and Spatial-Frequency Attention Mechanism[J]. Journal of Xidian University, 2022, 49(3):191-198. | |
[20] | DAUPHIN Y, FAN A, AULI M, et al. Language Modeling with Gated Convolutional Networks[C]// Proceedings of the 34th International Conference on Machine Learning(ICML). New York: ACM, 2017:933-941. |
[21] | HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway:IEEE, 2016:770-778. |
[22] | CAI H S, YUAN Z Q, GAO Y P, et al. A Multi-Modal Open Dataset for Mental-Disorder Analysis[J]. Scientific Data, 2022,9:178-188. |
[23] | ARBANAS G. Diagnostic and Statistical Manual of Mental Disorders(DSM-5)[J]. Alcoholism and psychiatry research, 2015,51:61-64. |
[24] | SUN S T, LI J X, CHEN H Y, et al. A Study of Resting-State EEG Biomarkers for Depression Recognition(2022)[J/OL].[2022-10-23]. https://arxiv.org/abs/2002.11039. |
[25] | SEAL A, BAJPAI R, AGNIHOTRI J, et al. DeprNet:A Deep Convolution Neural Network Framework for Detecting Depression Using EEG[J]. IEEE Transactions on Instrumentation and Measurement, 2021,70:1-13. |
[26] | JAS M, ENGEMANN D, BEKHTI Y, et al. Autoreject:Automated Artifact Rejection for MEG and EEG Data[J]. Neuroimage, 2016,159:417-429. |
[27] | HASANZADEH F, MOHEBBI M, ROSTAMI R. Graph Theory Analysis of Directed Functional Brain Networks in Major Depressive Disorder Based on EEG Signal[J]. Journal of Neural Engineering, 2020, 17(2):026010. |
[28] | SUN S T, CHEN H Y, SHAO X X, et al. EEG Based Depression Recognition by Combining Functional Brain Network and Traditional Biomarkers[C]//Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine(BIBM). Piscataway:IEEE, 2020:2074-2081. |
[29] | 尚照岩, 乔晓艳. 轻度抑郁症脑电特征分析与机器识别研究[J]. 测试技术学报, 2022, 36(6):498-505. |
SHANG Zhaoyan, QIAO Xiaoyan. Study on Analysis and Recognition of EEG Characteristics of Mild Depression[J]. Journal of Test and Measurement Technology, 2022, 36(6):498-505. | |
[30] | SANTAMARIA V E, MARTINEZ C V, VAQUERIZO V F, et al. EEG-Inception:A Novel Deep Convolutional Neural Network for Assistive ERP-Based Brain-Computer Interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(12):2773-2782. |
[31] | SALAMI A, ANDREU-PEREZ J, GILLMEISTER H. EEG-ITNet:An Explainable Inception Temporal Convolutional Network for Motor Imagery Classification[J]. IEEE Access, 2022,10:36672-36685. |
[32] | ZHANG X W, LI J L, HOU K C, et al. EEG-Based Depression Detection Using Convolutional Neural Network with Demographic Attention Mechanism[C]//Proceedings of the annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBC). Piscataway:IEEE, 2020:128-133. |
[33] | WANG Y X, LIU F R, YANG L J. EEG-Based Depression Recognition Using Intrinsic Time-scale Decomposition and Temporal Convolution Network[C]//Proceedings of the International Conference on Biological Information and Biomedical Engineering(BIBE). New York: ACM, 2021:1-6. |
[34] | DENG X, FAN X F, LV X W, et al. SparNet:A Convolutional Neural Network for EEG Space-Frequency Feature Learning and Depression Discrimination[J]. Frontiers in Neuroinformatics, 2022,16:914823. |
[35] | MAATEN L, HINTON G. Visualizing Data Using t-SNE[J]. Journal of Machine Learning Research, 2008,9:2579-2605. |
[1] | 张静, 吴慧雪, 张少博, 李云松. 分布式策略下的解码端增强图像压缩网络[J]. 西安电子科技大学学报, 2025, 52(1): 1-13. |
[2] | 王潮, 蒋晓锋, 王苏敏. 面向直觉推理的量子效应交通预测算法研究[J]. 西安电子科技大学学报, 2025, 52(1): 152-162. |
[3] | 赵从健, 焦一源, 李雁妮. 深度语句级实体关系抽取综述[J]. 西安电子科技大学学报, 2024, 51(6): 117-131. |
[4] | 王进花, 魏婷, 曹洁, 陈莉. 改进SwinIR的多特征融合图像超分辨率重建[J]. 西安电子科技大学学报, 2024, 51(6): 171-181. |
[5] | 徐海涛, 刘玉哲, 闫欣怡, 李娇娇, 薛长斌. 一种高光谱与LiDAR特征耦合的融合分类网络[J]. 西安电子科技大学学报, 2024, 51(6): 73-83. |
[6] | 武鑫婷, 黄樱, 牛保宁, 关虎, 兰方鹏, 刘杰. 图像纹理引导的迭代水印模型[J]. 西安电子科技大学学报, 2024, 51(5): 110-121. |
[7] | 张铭津, 周楠, 李云松. 平滑交互式压缩网络的红外小目标检测算法[J]. 西安电子科技大学学报, 2024, 51(4): 1-14. |
[8] | 高迪辉, 盛立杰, 许小冬, 苗启广. 图文跨模态检索的联合特征方法[J]. 西安电子科技大学学报, 2024, 51(4): 128-138. |
[9] | 万鹏武, 惠茜, 陈东瑞, 吴波. 基于二维异步同相正交直方图的调制方式识别[J]. 西安电子科技大学学报, 2024, 51(4): 78-90. |
[10] | 管业鹏, 苏光耀, 盛怡. 双向长短期记忆网络的时间序列预测方法[J]. 西安电子科技大学学报, 2024, 51(3): 103-112. |
[11] | 张相南, 高新波, 田春娜. 基于多边形特征池化与融合的复杂文本检测[J]. 西安电子科技大学学报, 2024, 51(3): 113-123. |
[12] | 夏译蓝, 王秀美, 程培涛. 基于多注意力机制的纹理感知视频修复方法[J]. 西安电子科技大学学报, 2024, 51(3): 136-146. |
[13] | 衡红军, 喻龙威. 基于多尺度特征信息融合的时间序列异常检测[J]. 西安电子科技大学学报, 2024, 51(3): 203-214. |
[14] | 贺王鹏, 胡德顺, 李诚, 周悦, 郭宝龙. 结合模板更新与轨迹预测的孪生网络跟踪算法[J]. 西安电子科技大学学报, 2024, 51(3): 46-54. |
[15] | 刘伟, 王孟洋, 白宝明. 面向带宽受限场景的高效语义通信方法[J]. 西安电子科技大学学报, 2024, 51(3): 9-18. |
|