西安电子科技大学学报 ›› 2024, Vol. 51 ›› Issue (2): 182-195.doi: 10.19665/j.issn1001-2400.20230211

• 计算机科学与技术&网络空间安全 • 上一篇    下一篇

多尺度卷积结合Transformer的抑郁脑电分类研究

翟凤文(), 孙芳林(), 金静()   

  1. 兰州交通大学 电子与信息工程学院,甘肃 兰州 730070
  • 收稿日期:2022-11-28 出版日期:2024-04-20 发布日期:2023-10-12
  • 通讯作者: 孙芳林(1998—),女,兰州交通大学硕士研究生,E-mail:ntusfl@163.com
  • 作者简介:翟凤文(1979—),女,副教授,E-mail:zhaifw@mail.lzjtu.cn;
    金 静(1982—),女,副教授,E-mail:jinjing@mail.lzjtu.cn
  • 基金资助:
    甘肃省自然基金(21JR11RA062);甘肃省高校创新基金(2022A-047)

Study of EEG classification of depression by multi-scale convolution combined with the Transformer

ZHAI Fengwen(), SUN Fanglin(), JIN Jing()   

  1. School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
  • Received:2022-11-28 Online:2024-04-20 Published:2023-10-12

摘要:

在通过深度学习模型进行抑郁症类脑电信号分析时,针对单一尺度的卷积存在特征提取不充分的问题和卷积神经网络在感知脑电信号全局依赖性方面的局限性,分别设计了多尺度动态卷积网络模块和门控Transformer编码器模块,并与时间卷积网络相结合,提出了混合网络模型(MGTTCNet)进行抑郁症患者和健康对照组的脑电信号分类。该模型首先通过多尺度动态卷积从空间域和频率域捕捉脑电信号的多尺度时频信息。其次通过门控Transformer编码器学习脑电信号中的全局依赖关系,其利用多头注意力机制有效增强网络表达相关脑电信号特征的能力。之后利用时间卷积网络提取脑电信号可用的时间特征,最后将提取的抽象特征输入到分类模块进行分类。在公开数据集MODMA上用留出法和十折交叉验证法对提出模型进行实验验证,分别取得了约98.51%和98.53%的分类准确率,相较于基线单尺度模型EEGNet,分类准确率分别提升了约1.89%和1.93%,F1值分别提升了约2.05%和2.08%,kappa系数值分别提高了约0.038 1和0.038 5;同时消融实验验证了文中设计的各个模块的有效性。

关键词: 脑电信号, 抑郁分类, 深度学习, Transformer, 时间卷积网络

Abstract:

In the process of using the deep learning model to classify the EEG signals of depression,aiming at the problem of insufficient feature extraction in single-scale convolution and the limitation of the convolutional neural network in perceiving the global dependence of EEG signals,a multi-scale dynamic convolution network module and the gated transformer encoder module are designed respectively,which are combined with the temporal convolution network,and a hybrid network model MGTTCNet is proposed to classify the EEG signals of patients with depression and healthy controls.First,multi-scale dynamic convolution is used to capture the multi-scale time-frequency information of EEG signals from spatial and frequency domains.Second,the gated transformer encoder is used to learn global dependencies in EEG signals,which effectively enhances the ability of the network to express relevant EEG signal features using the multi-head attention mechanism.Third,the temporal convolution network is used to extract temporal features available for EEG signals.Finally,the extracted abstract features are fed into the classification module for classification.The proposed model is experimentally validated on the public data set MODMA using the Hold-out method and the 10-Fold Cross Validation method,with the classification accuracy being 98.51% and 98.53%,respectively.Compared with the baseline single-scale model EEGNet,the classification accuracy of the proposed model is increased by 1.89% and 1.93%,the F1 value is increased by 2.05% and 2.08%,and the kappa coefficient values are increased by 0.0381 and 0.0385,respectively.Meanwhile,the ablation experiments verify the effectiveness of each module designed in this paper.

Key words: electroencephalography, depression classification, deep learning, Transformer, temporal convolutional networks

中图分类号: 

  • TP391