[1] |
DAEMEN J, RIJMEN V. The Design of Rijndael:AES—The Advanced Encryption Standard[M]. Berlin:Springer, 2002:1-238.
|
[2] |
AOKI K, ICHIKAWA T, KANDA M, et al. Selected Areas in Cryptography:Camellia:A 128-Bit Block Cipher Suitable for Multiple Platforms—Design and Analysis[M]. Berlin:Springer, 2020:39-56.
|
[3] |
国家密码管理局. 无线局域网产品使用的SMS4密码算法(2016)[EB/OL].[2020-02-20].https://www.oscca.gov.cn/sca/c100061/201611/1002423/files/330480f731f64e1ea75138211ea0dc27.pdf
|
[4] |
BOGDANOV A, KNUDSEN L, LEANDER G, et al. PRESENT:An Ultra-Lightweight Block Cipher[C]//Cryptographic Hardware and Embedded Systems(CHES 2007). Berlin: Springer, 2007:450-466.
|
[5] |
SHIRAI T, SHIBUTANI K, AKISHITA T, et al. The 128-Bit Block Cipher CLEFIA[C]// Fast Software Encryption(FSE 2007). Berlin: Springer, 2007:181-195.
|
[6] |
GUO J, PEYRIN T, POSCHMANN A, et al. The LED Block Cipher[C]//Cryptographic Hardware and Embedded Systems(CHES 2011). Berlin: Springer, 2011:326-341.
|
[7] |
WU W, ZHANG L. LBlock:A Lightweight Block Cipher[C]//Applied Cryptography and Network Security(ACNS 2011). Berlin: Springer, 2011:327-344.
|
[8] |
BORGHOFF J, CANTEAUT A, GÜNEYSU T, et al. Prince—A Low-Latency Block Cipher for Pervasive Computing Applications[C]// Advances in Cryptology(ASIACRYPT 2012). Berlin: Springer, 2012:208-225.
|
[9] |
GONG Z, NIKOVA S, LAW Y W. KLEIN:A New Family of Lightweight Block Ciphers[C]//RFID.Security and Privacy(RFIDSec 2011). Berlin: Springer, 2011:1-18.
|
[10] |
BEAULIEU R, SHORS D, SMITH J, et al. The Simon and Speck Families of Lightweight Block Ciphers(2013)[R/OL].[2022-01-01].https://eprint.iacr.org/2013/404.
|
[11] |
YANG G Q, ZHU B, SUDER V, et al. The Simeck Family of Lightweight Block Ciphers[C]//Cryptographic Hardware and Embedded Systems(CHES 2015). Berlin: Springer, 2015:307-329.
|
[12] |
BANIK S, PANDEY S K, PEYRIN T, et al. GIFT:A Small PRESENT[C]//Cryptographic Hardware and Embedded Systems(CHES 2017). Berlin: Springer, 2017:321-345.
|
[13] |
SANTHAMEENA S, FERNANDES E W, PUTTARAJU S. Comparison of PRESENT and KLEIN Ciphers Using Block RAMs of FPGA[C]//Expert Clouds and Applications. Berlin: Springer, 2022:453-465.
|
[14] |
ABINAYAM, PRABAKERAN S. Lightweight Block Cipher for Resource Constrained IoT Environment—An Survey,Performance,Cryptanalysis and Research Challenges[C]//IoT Based Control Networks and Intelligent Systems. Berlin: Springer, 2022:347-365.
|
[15] |
TEHRANIPOOR M, PUNDIR N, VASHISTHA N, et al. Hardware Security Primitives:Lightweight Cryptography[M]. Berlin: Springer, 2023:213-227.
|
[16] |
BIHAM E, SHAMIR A. Differential Cryptanalysis of DES-Like Crypto Systems[J]. Journal of Cryptology, 1991, 4(1):3-72.
doi: 10.1007/BF00630563
|
[17] |
MATSUI M. Linear Cryptanalysis Method for DES Cipher[C]//Advances in Cryptology(EUROCRYPT 1993). Berlin: Springer, 1993:386-397.
|
[18] |
谷大武, 张驰, 陆相君. 密码系统的侧信道分析:进展与问题[J]. 西安电子科技大学学报, 2021, 48(1):14-21.
|
|
GU Dawu, ZHANG Chi, LU Xiangjun. Progress of and Some Comments on the Research of Side-Channel Attack for Cryptosystems[J]. Journal of Xidian University, 2021, 48(1):14-21.
|
[19] |
GOHR A. Improving Attacks on Round-Reduced Speck32/64 Using Deep Learning[C]//Advances in Cryptology(CRYPTO 2019). Berlin: Springer, 2019:150-179.
|
[20] |
BAKSI A. Classical and Physical Security of Symmetric Key Cryptographic Algorithms:Machine Learning-Assisted Differential Distinguishers for Lightweight Ciphers[M]. Berlin: Springer, 2022:141-162.
|
[21] |
BAKSI A, BREIER J, CHEN Y, et al. Machine Learning Assisted Differential Distinguishers for Lightweight Ciphers[C]// 2021 Design,Automation & Test in Europe Conference & Exhibition(DATE). Piscataway: IEEE, 2021:176-181.
|
[22] |
CHEN Y, SHEN Y T,YU, H B, et al. A New Neural Distinguisher Considering Features Derived from Multiple Ciphertext Pairs[J]. The Computer Journal, 2023, 66(6):1419-1433.
doi: 10.1093/comjnl/bxac019
|
[23] |
SU H C, ZHU X Y, MING D. Polytopic Attack on Round-Reduced Simon32/64 Using Deep Learning[C]//Information Security and Cryptology(Inscrypt 2020). Berlin: Springer, 2020:3-20.
|
[24] |
付超辉, 段明, 魏强, 等. 基于深度学习的多面体差分攻击及其应用[J]. 密码学报, 2021, 8(4):591-600.
|
|
FU Chaohui, DUAN Ming, WEI Qiang, et al. Polytopic Differential Attack Based on Deep Learning and Its Application[J]. Journal of Cryptography, 2021, 8(4):591-600.
|
[25] |
杨小雪, 陈杰, 韩立东. 深度学习在ARX分组密码差分分析的应用[J]. 密码学报, 2022, 9(5):923-935.
|
|
YANG Xiaoxue, CHEN Jie, HAN Lidong. Application of Deep Learning in Differential Analysis of ARX Block Cipher[J]. Journal of Cryptography, 2022, 9(5):923-935.
|
[26] |
BENAMIRA A, GERAULT D, PEYRIN T, et al. A Deeper Look at Machine Learning-Based Cryptanalysis[C]//Advances in Cryptology(EUROCRYPT 2021). Berlin: Springer, 2021:805-835.
|
[27] |
BǍCUIEŢI N, BATINA L, PICEK S. Deep Neural Networks Aiding Cryptanalysis:A Case Study ofthe Speck Distinguisher[C]// Applied Cryptography and Network Security(ACNS 2022). Berlin: Springer, 2022:809-829.
|
[28] |
HOU B, LI Y, ZHAO H, et al. Linear Attack on Round-Reduced DES Using Deep Learning[C]//Computer Security(ESORICS 2020). Berlin: Springer, 2020:131-145.
|
[29] |
LIU G, LU J, LI H, et al. Preimage Attacks Against Lightweight Scheme Xoodyak Based on Deep Learning[C]//Advances in Information and Communication Conference. Berlin: Springer, 2021:637-648.
|
[30] |
HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE, 2016:770-778.
|