[1] |
LAVANYA R, SINGH U, TYAGI V. A Comprehensive Survey on Movie Recommendation Systems[C]//2021 International Conference on Artificial Intelligence and Smart Systems(ICAIS). Piscataway:IEEE, 2021:532-536.
|
[2] |
CHEN R, HUA Q Y, CHANG Y S, et al. A Survey of Collaborative Filtering-Based Recommender Systems:from Traditional Methods to Hybrid Methods Based on Social Networks[J]. IEEE Access, 2018, 6:64301-64320.
doi: 10.1109/ACCESS.2018.2877208
|
[3] |
KOREN Y, BELL R, VOLINSKY C. Matrix Factorization Techniques for Recommender Systems[J]. Computer, 2009, 42(8):30-37.
|
[4] |
史加荣, 李金红. 新型深度矩阵分解及其在推荐系统中的应用[J]. 西安电子科技大学学报, 2022, 49(3):171-182.
|
|
SHI Jiarong, LI Jinhong. Novel Deep Matrix Factorization and Its Application in the Recommendation System[J]. Journal of Xidian University, 2022, 49(3):171-182.
|
[5] |
韩立锋, 陈莉, 史晓龙. 融合项目属性偏好的矩阵分解推荐模型[J]. 西安电子科技大学学报, 2022, 49(3):147-159.
|
|
HAN Lifeng, CHEN Li, SHI Xiaolong. Matrix Decomposition Recommendation Model Incorporating Item Attribute Preference[J]. Journal of Xidian University, 2022, 49(3):147-159.
|
[6] |
WU S W, SUN F, ZHANG W T, et al. Graph Neural Networks in Recommender Systems:a Survey[J]. ACM Computing Surveys(CSUR), 2023, 55(5):1-37.
|
[7] |
KIPF T N, WELLING M. Semi-Supervised Classification with Graph Convolutional Networks[C]//5th International Conference on Learning Representations(ICLR 2017). La Jolla: ICLR, 2017:1-14.
|
[8] |
VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph Attention Networks[C]//6th International Conference on Learning Representations(ICLR 2018). La Jolla: ICLR, 2018:1-12.
|
[9] |
YU J, YIN H, XIA X, et al.(2022). Are Graph Augmentations Necessary? Simple Graph Contrastive Learning for Recommendation[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR 2022). New York: ACM, 2022:1294-1303.
|
[10] |
MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed Representations of Words and Phrases and Their Compositionality[C]//Twenty-seventh Conference on Neural Information Processing Systems(NeurIPS 2013). San Diego: NIPS, 2013, 2:3111-3119.
|
[11] |
PARK D H, CHANG Y. Adversarial Sampling and Training for Semi-Supervised Information Retrieval[C]// Proceedings of the World Wide Web Conference(WWW’19). New York: ACM, 2019:1443-1453.
|
[12] |
WANG X, XU Y K, HE X N, et al.Reinforced Negative Sampling over Knowledge Graph for Recommendation[C]//Proceedings of the World Wide Web Conference(WWW’20). T New York: ACM, 2020:99-109.
|
[13] |
YANG Z, DING M, XU Z, et al. Region or Global? A Principle for Negative Sampling in Graph-Based Recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(6):6264-6277.
|
[14] |
ZHOU Y, ZHENG H X, HUANG X, et al. Graph Neural Networks:Taxonomy, Advances, and Trends[J]. ACM Transactions on Intelligent Systems and Technology, 2022, 13(1):1-54.
|
[15] |
WANG Y, LIU Z W, FAN Z W, et al. DSKReG:Differentiable Sampling on Knowledge Graph for Recommendation with Relational GNN[C]// Proceedings of the 30th ACM International Conference on Information & Knowledge Management(CIKM ‘21). New York: ACM, 2021:3513-3517.
|
[16] |
YANG L W, LIU Z W, DOU Y T, et al. ConsisRec:Enhancing GNN for Social Recommendation via Consistent Neighbor Aggregation[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR 2021). New York: ACM, 2021:2141-2145.
|
[17] |
HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Thirty-first Conference on Neural Information Processing Systems(NIPS 2017). San Diego: NIPS, 2017:1025-1035.
|
[18] |
SUN J N, ZHANG Y X, MA C, et al. Multi-Graph Convolution Collaborative Filtering[C]//2019 IEEE International Conference on Data Mining(ICDM 2019). Piscataway:IEEE, 2019:1306-1311.
|
[19] |
BERG R V D, KIPF T N, WELLING M. Graph Convolutional Matrix Completion[C]//24th ACM SIGKDD Conference on Knowledge Discovery and Data Mining Deep Learning Day(KDD’18 Deep Learning Day). New York: ACM, 2018:1-9.
|
[20] |
WANG X, HE X N, WANG M, et al. Neural Graph Collaborative Filtering[C]// Proceedings of the 42th International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR 2019). New York: ACM, 2019:165-174.
|
[21] |
HE X N, DENG K, WANG X, et al. LightGCN:Simplifying and Powering Graph Convolution Network for Recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR 2020). New York: ACM, 2020:639-648.
|
[22] |
RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR:Bayesian Personalized Ranking from Implicit Feedback[C]//Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence(UAI’09). Montreal: AUAI Press, 2009:452-461.
|
[23] |
PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk:Online Learning of Social Representations[C]//In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD '14). New York: ACM, 2014:701-710.
|
[24] |
YING R, HE R N, CHEN K F, et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems[C]//In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD'18). New York: ACM, 2018:974-983.
|
[25] |
CHEN J W, WANG C, ZHOU S, et al. SamWalker:Social Recommendation with Informative Sampling Strategy[C]//In Proceedings of the World Wide Web Conference(WWW’19). New York: ACM, 2019:228-239.
|
[26] |
WU L, YANG Y H, ZHANG K, et al. Joint Item Recommendation and Attribute Inference:An Adaptive Graph Convolutional Network Approach[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR 2020). New York: ACM, 2020:679-688.
|
[27] |
MU C, HUANG H, LIU Y, et al. Graph Convolutional Neural Network based on the Combination of Multiple Heterogeneous Graphs[C]//2022 International Conference on Data Mining Workshops(ICDMW). Piscataway:IEEE, 2022:732-740.
|
[28] |
GROVER A, LESKOVEC J. Node2vec: Scalable Feature Learning for Networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD’16). New York: ACM, 2016:855-864.
|
[29] |
GLOROT X, BENGIO Y. Understanding the Difficulty of Training Deep Feedforward Neural Networks[C]//International Conference on Artificial Intelligence and Statistics(AISTATS 2010). New York: PMLR, 2010:249-256.
|
[30] |
YANG J H, CHEN C M, WANG C J, et al. HOP-rec:High-Order Proximity for Implicit Recommendation[C]//In Proceedings of the 12th ACM Conference on Recommender Systems(RecSys'18). New York: ACM, 2018:140-144.
|
[31] |
LIU Z W, MENG L, JIANG F, et al. Deoscillated Adaptive Graph Collaborative Filtering[C]// Topological,Algebraic and Geometric Learning Workshops 2022. New York: PMLR, 2022:248-257.
|