[1] |
LIU Y, MA Z, LIU X, et al. Privacy-Preserving Object Detection for Medical Images with Faster R-CNN[J]. IEEE Transactions on Information Forensics and Security, 2022,17:69-84.
|
[2] |
GUO Y, BI L, AHN E, et al. A Spatiotemporal Volumetric Interpolation Network for 4d Dynamic Medical Image[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway:IEEE, 2020: 4725-4734.
|
[3] |
LUO X, LI L, WAN H, et al. Phone Keypad Voice Recognition:An Integrated Experiment for Digital Signal Processing Education[C]//2020 IEEE Frontiers in Education Conference(FIE). Piscataway:IEEE, 2020: 1-4.
|
[4] |
XIONG J, BI R, TIAN Y, et al. Toward Lightweight,Privacy-Preserving Cooperative Object Classification for Connected Autonomous Vehicles[J]. IEEE Internet of Things Journal, 2022, 9(4):2787-2801.
|
[5] |
XIONG J, BI R, ZHAO M, et al. Edge-Assisted Privacy-Preserving Raw Data Sharing Framework for Connected Autonomous Vehicles[J]. IEEE Wireless Communications, 2020, 27(3):24-30.
|
[6] |
ZENG Y, ZHANG Z Y, LIU J L, et al. Pri-EMO:A Universal Perturbation Method for Privacy Preserving Facial Emotion Recognition[J]. Journal of Information and Intelligence, 2023, 1(4):330-340.
|
[7] |
CARTER H, MOOD B, TRAYNOR P, et al. Secure Outsourced Garbled Circuit Evaluation for Mobile Devices[J]. Journal of Computer Security, 2016, 24(2):137-180.
|
[8] |
LUO Y K, LUO W J, ZHANG R Z, et al. RobustPeer-to-Peer Learning via Secure Multi-Party Computation[J]. Journal of Information and Intelligence, 2023, 1(4):341-351.
|
[9] |
MOHASSEL P, ROSULEK M, TRIEU N. Practical Privacy Preserving K-means Slustering[J]. Proceedings on Privacy Ehancing Technologies, 2020(4):414-433.
|
[10] |
张馨予. 基于博弈系统论的安全多方计算协议的分析与设计[D]. 贵阳: 贵州大学, 2021.
|
[11] |
JAGANNATHAN G, WRIGHT R N. Privacy-Preserving Distributed K-means Clustering over Arbitrarily Partitioned Data[C]//Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. New York: ACM, 2005:593-599.
|
[12] |
XING K, HU C, YU J, et al. Mutual Privacy Preserving K-means Clustering in Social Participatory Sensing[J]. IEEE Transactions on Industrial Informatics, 2017, 13(4):2066-2076.
|
[13] |
BUNN P, OSTROVSKY R. Secure Two-Party K-means Clustering[C]//Proceedings of the 14th ACM Conference on Computer and Communications Security. New York: ACM, 2007:486-497.
|
[14] |
LIU D, BERTINO E, YI X. Privacy of Outsourced K-means Clustering[C]//Proceedings of the 9th ACM Symposium on Information,Computer and Communications Security. New York: ACM. 2014:123-134.
|
[15] |
JIANG Z L, GUO N, JIN Y, et al. Efficient Two-Party Privacy-Preserving Collaborative K-means Clustering Protocol Supporting Both Storage and Computation Outsourcing[J]. Information Sciences, 2020,518:168-180.
|
[16] |
JHA S, KRUGER L, MCDANIEL P. Privacy Preserving Clustering[C]//Computer Security(ESORICS 2005). Berlin:Springer, 2005:397-417.
|
[17] |
FAN Y, BAI J, LEI X, et al. PPMCK:Privacy-Preserving Multi-Party Computing for K-means Clustering[J]. Journal of Parallel and Distributed Computing, 2021,154:54-63.
|
[18] |
YUAN J, TIAN Y. Practical Privacy-Preserving Mapreduce Based K-means Clustering over Large-Scale Dataset[J]. IEEE Transactions on Cloud Computing, 2019, 7(2):568-579.
|
[19] |
BUNN P, OSTROVSKY R. Oblivious Sampling with Applications to Two-Party K-means Clustering[J]. Journal of Cryptology, 2020, 33(3):1362-1403.
|
[20] |
ZOU Y, ZHAO Z, SHI S, et al. Highly Secure Privacy-Preserving Outsourced K-means Clustering under Multiple Keys in Cloud Computing[J]. Security and Communication Networks, 2020,1238505:1-11.
|
[21] |
WU W, LIU J, WANG H M, et al. Secure and Efficient Outsourced K-means Clustering Using Fully Homomorphic Encryption with Ciphertext Packing Technique[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(10):3424-3437.
|
[22] |
车小亮, 周昊楠, 杨晓元, 等. 环LWE上高效的多密钥全同态加密方案[J]. 西安电子科技大学学报, 2021, 48(1):87-95.
|
|
CHE Xiaoliang, ZHOU Haonan, YANG Xiaoyuan, et al. Efficient Multi-Key Fully Homomorphic Encryption Scheme from RLWE[J]. Journal of Xidian University, 2021, 48(1):87-95.
|
[23] |
BLUM A, DWORK C, MCSHERRY F, et al. Practical Privacy:the SuLQ Framework[C]//Proceedings of the Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. New York: ACM, 2005:128-138.
|
[24] |
FELDMAN D, FIAT A, KAPLAN H, et al. Private Coresets[C]//Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing. New York: ACM, 2009:361-370.
|
[25] |
FELDMAN D, XIANG C, ZHU R, et al. Coresets for Differentially Private K-means Clustering and Applications to Privacy in Mobile Sensor Networks[C]//Proceedings of the 2017 16th ACM/IEEE International Conference on Information Processing in Sensor Networks(IPSN). Piscataway:IEEE, 2017:3-16.
|
[26] |
NGUYEN HH. Privacy-Preserving Mechanisms for K-Modes Clustering[J]. Computers & Security, 2018,78:60-75.
|
[27] |
YUAN L, ZHANG S, ZHU G, et al. Privacy Preserving Mechanism for Mixed Data Clustering with Local Differential Privacy[J]. Concurrency and Computation:Practice and Experience, 2023, 35(19):e6503.1- e6503.15.
|
[28] |
ZHANG E, LI H, HUANG Y, et al. Practical Multi-Party Private Collaborative K-means Clustering[J]. Neurocomputing, 2022,467:256-265.
|
[29] |
BI R, XIONG J, LIN J, et al. Outsourced and Practical Privacy-Preserving K-prototype Clustering Supporting Mixed Data[C]//Proceedings of the IEEE International Conference on Communications. Piscataway:IEEE, 2022:5645-5650.
|
[30] |
KÜPÇÜ A. Incentivized Outsourced Computation Resistant to Malicious Contractors[J]. IEEE Transactions on Dependable and Secure Computing, 2017, 14(6):633-649.
|
[31] |
WU S, CHEN Y, WANG Q, et al. CReam:A Smart Contract Enabled Collusion-Resistant E-Auction[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(7):1687-1701.
|
[32] |
LI Q, TIAN Y. Rational Eelegation Computing Using Information Theory and Game Theory Approach[C]//MultiMedia Modeling(MMM 2020). Berlin:Springer, 2020:669-680.
|
[33] |
DONG C, WANG Y, ALDWEESH A, et al. Betrayal,Distrust,and Rationality:Smart Counter-Collusion Contracts for Verifiable Cloud Computing[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017:211-227.
|
[34] |
CHEN Z, TIAN Y, XIONG J, et al. Towards Reducing Delegation Overhead in Replication-Based Verification:An Incentive- Compatible Rational Delegation Computing Scheme[J]. Information Sciences, 2021,568:286-316.
|
[35] |
HUANG Z. Clustering Large Data Sets with Mixed Numeric and Categorical Values[C]//Proceedings of the 1st Pacific-Asia Conference on Knowledge Discovery and Data Mining(PAKDD). Singapore:PAKDD, 1997:21-34.
|
[36] |
SHAMIR A. How to Share a Secret[J]. Communications of the ACM, 1979, 22(11):612-613.
|
[37] |
PAILLIER P. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes[C]//Advances in Cryptology(EUROCRYPT 1999). Berlin:Springer, 1999:223-238.
|
[38] |
CHEN Z, TIAN Y, PENG C. An Incentive-Compatible Rational Secret Sharing Scheme Using Blockchain and Smart Contract[J]. Science China Information Sciences, 2021, 64(202301):1-21.
|
[39] |
赵敏, 田有亮, 熊金波, 等. 基于同态加密的神经网络模型训练方法[J]. 计算机科学, 2023, 50(5):372-381.
doi: 10.11896/jsjkx.220300239
|
|
ZHAO Min, TIAN Youliang, XIONG Jinbo, et al. Neural Network Model Training Method Based on Homomorphic Encryption[J]. Computer Science, 2023, 50(5):372-381.
doi: 10.11896/jsjkx.220300239
|
[40] |
王伊蕾, 徐秋亮. 理性安全多方计算研究[J]. 密码学报, 2014, 1(5):481-490.
doi: 10.13868/j.cnki.jcr.000045
|
|
WANG Yilei, XU Qiuliang. Survey on Rational Secure Multi-Party Computation[J]. Journal of Cryptologic Research, 2014, 1(5):481-490.
|
[41] |
张恩, 朱君哲, 范海菊, 等. 基于电路计算的理性安全多方求和协议[J]. 密码学报, 2019, 6(1):123-132.
doi: 10.13868/j.cnki.jcr.000289
|
|
ZHANG En, ZHU Junzhe, FAN Haiju, et al. Rational Secure Multiparty Sum Protocol Based on Circuit Computing[J]. Journal of Cryptologic Research, 2019, 6(1):123-132.
|
[42] |
LIU Y, MA Z, LIU X M, et al. Privacy-Preserving Object Detection for Medical Images with Faster R-CNN[J]. IEEE Transactions on Information Forensics and Security, 2022,17:69-84.
|
[43] |
熊金波, 毕仁万, 陈前昕, 等. 边缘协作的轻量级安全区域建议网络[J]. 通信学报, 2020, 41(10):188-201.
doi: 10.11959/j.issn.1000-436x.2020186
|
|
XIONG Jinbo, Bi Renwan, CHEN Qianxin, et al. Towards Edge-Collaborative,Lightweight and Secure Region Proposal Network[J]. Journal on Communications, 2020, 41(10):188-201.
doi: 10.11959/j.issn.1000-436x.2020186
|
[44] |
WAGH S, TOPLE S, BENHAMOUDA F, et al. Falcon:Honest-Majority Maliciously Secure Framework for Private Deep Learning[J]. Proceedings on Privacy Enhancing Technologies, 2021(1):188-208.
|
[45] |
HUANG K, LIU X M, FU S, et al. A Lightweight Privacy-Preserving CNN Feature Extraction Framework for Mobile Sensing[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18(3):1441-1455.
|