[1] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data[C]//Artificial Intelligence and Statistics. New York: PMLR, 2017:1273-1282.
|
[2] |
LI Q B, WEN Z Y, WU Z M, et al. A Survey on Federated Learning Systems:Vision,Hype and Reality for Data Privacy and Protection[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4):3347-3366.
doi: 10.1109/TKDE.2021.3124599
|
[3] |
YIN X F, ZHU Y M, HU J K. A Comprehensive Survey of Privacy-Preserving Federated Learning:A Taxonomy,Review,and Future Directions[J]. ACM Computing Surveys (CSUR), 2021, 54(6):1-36.
|
[4] |
WANG Z, SONG M, ZHANG Z, et al. Beyond Inferring Class Representatives:User-Level Privacy Leakage from Federated Learning[C]//IEEE INFOCOM 2019-IEEE Conference on Computer Communications. Piscataway:IEEE, 2019:2512-2520.
|
[5] |
ZHU L G, LIU Z J, HAN S. Deep Leakage from Gradients[J]. Advances in Neural Information Processing Systems, 2019, 32:14774-14784.
|
[6] |
ABADI M, CHU A, GOODFELLOW I, et al. Deep Learning with Differential Privacy[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016:308-318.
|
[7] |
陈律君, 肖迪, 余柱阳, 等. 基于秘密共享和压缩感知的通信高效联邦学习[J]. 计算机研究与发展, 2022, 59(11):2395-2407.
|
|
CHEN Lüjun, XIAO Di, YU Zhuyang, et al. Communication-Efficient Federated Learning Based on Secret Sharing and Compressed Sensing[J]. Journal of Computer Research and Development, 2022, 59(11):2395-2407.
|
[8] |
李文华, 董丽华, 曾勇. key-nets同态加密方案的安全性分析及改进[J]. 西安电子科技大学学报, 2023, 50(1):192-202.
|
|
LI Wenhua, DONG Lihua, ZENG Yong. Analysis and Improvement of the Security of the Key-Nets Homomorphic Encryption Scheme[J]. Journal of Xidian University, 2023, 50(1):192-202.
|
[9] |
EL OUADRHIRI A, ABDELHADI A. Differential Privacy for Deep and Federated Learning:A Survey[J]. IEEE Access, 2022, 10:22359-22380.
doi: 10.1109/ACCESS.2022.3151670
|
[10] |
PHONG L T, AONO Y, HAYASHI T, et al. Privacy-Preserving Deep Learning via Additively Homomorphic Encryption[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(5):1333-1345.
doi: 10.1109/TIFS.2017.2787987
|
[11] |
刘艺璇, 陈红, 刘宇涵, 等. 联邦学习中的隐私保护技术[J]. 软件学报, 2022, 33(3):1057-1092.
|
|
LIU Yixuan, CHEN Hong, LIU Yuhan, et al. Privacy-Preserving Techniques in Federated Learning[J]. Journal of Software, 2022, 33(3):1057-1092.
|
[12] |
GHIMIRE B, RAWAT D B. RecentAdvances on Federated Learning for Cybersecurity and Cybersecurity for Federated Learning for Internet of Things[J]. IEEE Internet of Things Journal, 2022, 9(11):8229-8249.
doi: 10.1109/JIOT.2022.3150363
|
[13] |
ZHANG X L, FU A M, WANG H Q, et al. A Privacy-Preserving and Verifiable Federated Learning Scheme[C]//ICC 2020 IEEE International Conference on Communications (ICC).Piscataway:IEEE, 2020:1-6.
|
[14] |
ASAD M, MOUSTAFA A, ASLAM M. CEEP-FL:A Comprehensive Approach for Communication Efficiency and Enhanced Privacy in Federated Learning[J]. Applied Soft Computing, 2021, 104:107235.
doi: 10.1016/j.asoc.2021.107235
|
[15] |
WANG L P, WANG W, LI B. CMFL:Mitigating Communication Overhead for Federated Learning[C]//2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS).Piscataway:IEEE, 2019:954-964.
|
[16] |
HORVÓTH S, HO C Y, HORVATH L, et al. Natural Compression for Distributed Deep Learning[C]//Mathematical and Scientific Machine Learning. New York: PMLR, 2022:129-141.
|
[17] |
CATALANO D, GENNARO R, HOWGRAVE-GRAHAM N, et al. Paillier’s Cryptosystem Revisited[C]//Proceedings of the 8th ACM Conference on Computer and Communications Security. New York: ACM, 2001:206-214.
|
[18] |
SIPSER M. Introduction to the Theory of Computation[J]. ACM Sigact News, 1996, 27(1):27-29.
doi: 10.1145/230514.571645
|
[19] |
LINDNER R, PEIKERT C. Better Key Sizes (and Attacks) for LWE-based Encryption[C]//Cryptographers’ Track at the RSA Conference. Heidelberg:Springer, 2011:319-339.
|
[20] |
HUANG X X, DING Y, JIANG Z L, et al. DP-FL:A Novel Differentially Private Federated Learning Framework for the Unbalanced Data[J]. World Wide Web, 2020, 23(4):2529-2545.
doi: 10.1007/s11280-020-00780-4
|