[1] |
HAN J, KAMBER M. Data Mining:Concepts and Techniques[M]. San Francisco: Morgan Kaufmann, 2000:559-569.
|
[2] |
WU W, PENG M. A Data Mining Approach Combining K-Means Clustering with Bagging Neural Network for Short-Term Wind Power Forecasting[J]. IEEE Internet of Things Journal, 2017, 4(4):979-986.
|
[3] |
HOU J, LIU W, CUI H, et al. Towards Parameter-Independent Data Clustering and Image Segmentation[J]. Pattern Recognition, 2016, 60(C):25-36.
|
[4] |
XU R, WUNSCH D. Survey of Clustering Algorithms[J]. IEEE Transactions on Neural Networks, 2005, 16(3):645-678.
pmid: 15940994
|
[5] |
MAU T N, INOGUCHI Y, HUYNH V N. A Novel Cluster Prediction ApproachBased on Locality-Sensitive Hashing for Fuzzy Clustering of Categorical Data[J]. IEEE Access, 2022,10:34196-34206.
|
[6] |
秦宁宁, 张臣臣. 模糊聚类下的接入点选择匹配定位算法[J]. 西安电子科技大学学报, 2022, 49(4):71-81.
|
|
QIN Ningning, ZHANG Chenchen. Access Point Selection Matching Localization Algorithm Based on Fuzzy Clustering[J]. Journal of Xidian University, 2022, 49(4):71-81.
|
[7] |
WANG Y, PANG W, ZHOU J. An Improved Density Peak Clustering Algorithm Guided by Pseudo Labels[J]. Knowledge-Based Systems, 2022,252:109374.
|
[8] |
LEE J S, LEE H T, CHO I S. Maritime Traffic Route Detection FrameworkBased on Statistical Density Analysis from AIS Data Using a Clustering Algorithm[J]. IEEE Access, 2022,10:23355-23366.
|
[9] |
MACQUEEN J. Some Methods for Classification and Analysis of Multivariate Observations[C]// Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: Berkeley Symposium on Mathematical Statistics and Probability, 1967:281-297.
|
[10] |
JAIN A K. Data clustering:50 Years beyond K-means[J]. Pattern Recognition Letters, 2010, 31(8):651-666.
|
[11] |
RODRIGUEZ A, LAIO A. Clustering by Fast Search and Find of Density Peaks[J]. Science, 2014, 344(6191):1492-1496.
|
[12] |
DU M, DING S, JIA H. Study on Density Peaks Clustering Based on K-Nearest Neighbors and Principal Component Analysis[J]. Knowledge-Based Systems, 2016,99:135-145.
|
[13] |
XIE J, GAO H, XIE W, et al. Robust Clustering by Detecting Density Peaks and Assigning Points Based on Fuzzy Weighted K-Nearest Neighbors[J]. Information Sciences, 2016,354:19-40.
|
[14] |
LIU R, WANG H, YU X. Shared-Nearest-Neighbor-Based Clustering by Fast Search and Find of Density Peaks[J]. Information Sciences, 2018,450:200-226.
|
[15] |
TONG W, LIU S, GAO X. A Density-Peak-Based Clustering Algorithm of Automatically Determining the Number of Clusters[J]. Neurocomputing, 2021, 458(8):655-666.
|
[16] |
ZHANG Z, ZHU Q, ZHU F, et al. Density Decay Graph-Based Density Peak Clustering[J]. Knowledge-Based Systems, 2021, 224(4):107075.
|
[17] |
GUO W, WANG W, ZHAO S, et al. Density Peak Clustering with Connectivity Estimation[J]. Knowledge-Based Systems, 2022,243:108501.
|
[18] |
ZHU Qi, FENG J, HUANG J. Natural Neighbor:A Self-Adaptive Neighborhood Method without Parameter K[J]. Pattern Recognition Letters, 2016,80:30-36.
|
[19] |
NIE Q, NIE Z. Natural NeighborGalerkin Method for Electromagnetic Field Analysis[C]//2022 Global Conference on Robotics,Artificial Intelligence and Information Technology. Piscataway:IEEE, 2022: 811-814.
|
[20] |
XIONG J, ZANG W, CHE J, et al. Density Peaks Clustering Based on Natural Search Neighbors and Manifold Distance Metric[J]. IEEE Access, 2022,10:114642-114656.
|
[21] |
FU L, MEDICO E. FLAME, A Novel Fuzzy Clustering Method for the Analysis of DNA Microarray Data[J]. BMC Bioinformatics, 2007, 8(1):1-15.
|
[22] |
CHEN J, YU P S. A Domain Adaptive Density Clustering Algorithm for Data with Varying Density Distribution[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(6):2310-2321.
|
[23] |
CHANG H, YEUNG D Y. Robust Path-Based Spectral Clustering[J]. Pattern Recognition, 2008, 41(1):191-203.
|
[24] |
JAIN A K, LAW M. Data Clustering:A User’s Dilemma[C]// International Conference on Pattern Recognition & Machine Intelligence. Heidelberg:Springer, 2005:1-10.
|
[25] |
YANG L, CHEUNG Y M, TANG Y. Self-AdaptiveMultiprototype-Based Competitive Learning Approach:A k-Means-Type Algorithm for Imbalanced Data Clustering[J]. IEEE Transactions on Cybernetics, 2019, 51(3):1598-1612.
|
[26] |
FRANTI P, SIERANOJA S. k-Means Properties on Six Clustering Benchmark Datasets[J]. Applied Intelligence, 2018,48:4743-4759.
|
[27] |
FREIRE A L, BARRETO G A, VELOSO M, et al. Short-Term Memory Mechanisms in Neural Network Learning of Robot Navigation Tasks:A Case Study[C]// Robotics Symposium. Piscataway:IEEE, 2009:1-6.
|
[28] |
DUA D, GRAFF C. UCI Machine Learning Repository(2019)[DB/OL].[2019-01-01]. http://archive.ics.uci.edu/ml.
|
[29] |
SEPTIARINI A, HAMDANI H, SARI S U, et al. Image Processing Techniques for Tomato Segmentation Applying k-Means Clustering and Edge Detection Approach[C]//2021 International Seminar on Machine Learning,Optimization,and Data Science. Piscataway:IEEE, 2021: 92-96.
|
[30] |
KHILKHAL R, ISMAEL M. Brain Tumor Segmentation Utilizing Thresholding and k-Means Clustering[C]//2022 Muthanna International Conference on Engineering Science and Technology. Piscataway:IEEE, 2022: 43-48.
|
[31] |
ZHANG H, PENG Q. PSO and k-Means-Based Semantic Segmentation toward Agricultural Products[J]. Future Generation Computer Systems, 2022,126:82-87.
|
[32] |
张泽欢, 刘强, 国狄非. 面向大规模零样本图像识别的高效算法框架[J]. 西安电子科技大学学报, 2022, 49(6):103-110.
|
|
ZHANG Zehuan, LIU Qiang, GUO Difei. High Efficient Framework for Large-Scale Zero-Shot Image Recognition[J]. Journal of Xidian University, 2022, 49(6):103-110.
|