西安电子科技大学学报 ›› 2023, Vol. 50 ›› Issue (6): 44-61.doi: 10.19665/j.issn1001-2400.20230903

• 电磁空间安全专栏 • 上一篇    下一篇

智能对抗无人机的干扰组合序列生成算法研究

马小梦(),高梅国(),于默涵(),李云杰()   

  1. 北京理工大学 信息与电子学院,北京 100081
  • 收稿日期:2023-03-10 出版日期:2023-12-20 发布日期:2024-01-22
  • 通讯作者: 高梅国(1965—),男,教授,E-mail:meiguo_g@bit.edu.cn
  • 作者简介:马小梦(1994—),男,北京理工大学博士研究生,E-mail:bit_mxm@163.com;|于默涵(1999—),女,北京理工大学硕士研究生,E-mail:1752858199@qq.com;|李云杰(1975—),男,教授,E-mail:liyunjie@bit.edu.cn
  • 基金资助:
    国家自然科学基金(61976019)

Research on the interference combinational sequence generation algorithm for the intelligent countermeasure UAV

MA Xiaomeng(),GAO Meiguo(),YU Mohan(),LI Yunjie()   

  1. School of Communication and Electronics,Beijing Institute of Technology,Beijing 100081,China
  • Received:2023-03-10 Online:2023-12-20 Published:2024-01-22

摘要:

随着无人机自主导航飞行技术的成熟与发展,出现了未经授权的无人机在管制空域随意飞行的现象,给人身安全带来了巨大的隐患,造成了一定程度的经济损失。本研究为在识别无人机飞行状态和实时评估对抗效能的基础上,提高在无人机飞控未知情况下的自适应测控和导航干扰有效性,最终实现基于遥控通信干扰和导航定位干扰多类型干扰组合与非智能无人机的智能对抗博弈。以雷达探测、GPS导航定位、无人机遥控通信压制干扰和GPS导航压制及欺骗干扰等功能构建了反无系统与无人机对抗博弈模型,采用深度强化学习技术和马尔可夫决策过程构建数学模型,同时提出了用于对无人机飞行状态分类的态势评估环为反无系统网络感知干扰效能提供基础信息。分别使用了近端策略优化算法、柔性演员-评论家算法和演员-评论家算法,对构建的智能反无系统进行多次训练,最终生成了依据无人机飞行状态和对抗效能产生智能干扰组合序列的网络参数。所采用的各类深度强化学习算法产生的智能干扰组合序列均实现了欺骗无人机这一最初设定的目标,验证了反无人机系统模型的有效性。对比试验表明,所提态势评估环在反无系统感知干扰效能方面信息是充足有效的。

关键词: 深度强化学习, 无人机, 态势感知, 智能, 对抗, 干扰组合

Abstract:

With the maturity and development of the autonomous navigation flight technology for the unmanned aerial vehicle(UAV),the phenomenon of the unauthorized UAV flying in controlled airspace appears,which brings a great hidden danger to personal safety and causes a certain degree of economic losses.The research of this paper is on improving the effectiveness of adaptive measurement and control and navigation interference in the unknown situation of UAV flight control on the basis of identifying the UAV flight status and real-time evaluation of countermeasure effectiveness,and finally realizing the intelligent countermeasure game between the non-intelligent UAV based on the combination of remote communication interference and navigation and positioning interference.In this paper,a game model of the anti-UAV system(AUS) and UAV confrontation is developed based on the original units of radar detection,GPS navigation positioning,UAV remote communication suppression jamming and GPS navigation suppression and spoofing.The mathematical model is constructed by using deep reinforcement learning and the Markov decision process.Meanwhile,the concept of situation assessment ring for the classification of the UVA flight status is proposed to provide basic information for network sensing jamming effectiveness.The near-end strategy optimization algorithm,maximum entropy optimization algorithm and actor-critic algorithm are respectively used to train the constructed intelligent AUS for many times,and finally the network parameters are generated to generate the intelligent interference combination sequence according to the UAV flight state and countermeasures efficiency.The intelligent interference combination sequences generated by various deep reinforcement learning algorithms in this paper all achieve the initial goal of deceiving UAVs,which verifies the effectiveness of the anti-UAVs system model.The comparison experiment shows that the proposed situation assessment loop is sufficient and effective in the aspect of AUS sensing interference effectiveness.

Key words: deep reinforce learning, UAV, situational awareness, intelligence, confrontation, interference combination

中图分类号: 

  • TN911.7