[1] |
王朝宇, 郭继昌, 王天保. 融合显著性信息的水下图像清晰化算法[J]. 西安电子科技大学学报, 2022, 49(3):137-146.
|
|
WANG Zhaoyu, GUO Jichang, WANG Tianbao, et al. Algorithm for Clarification of the Underwater Image Combining Saliency Information[J]. Journal of Xidian University, 2022, 49(3):137-146.
|
[2] |
KAUSU T R, GOPI V P, WAHID K A, et al. Combination of Clinical and Multiresolution Features for Glaucoma Detection and Its Classification Using Fundus Images[J]. Biocybernetics and Biomedical Engineering, 2018, 38(2):329-341.
|
[3] |
LI X, HU X, QI X, et al. Rotation-Oriented Collaborative Self-Supervised Learning for Retinal Disease Diagnosis[J]. IEEE Transactions on Medical Imaging, 2021, 40(9):2284-2294.
|
[4] |
董慧妍. 基于机器学习的糖尿病性视网膜病变图像分级研究[D]. 北京: 北京邮电大学, 2019.
|
[5] |
AL-BANDER B, AL-NUAIMY W, WILLIAMS B M, et al. Multiscale Sequential Convolutional Neural Networks for Simultaneous Detection of Fovea and Optic Disc[J]. Biomedical Signal Processing and Control, 2018,40:91-101.
|
[6] |
ZAGO G T, ANDREAO R V, DORIZZI B, et al. Retinal Image Quality Assessment Using Deep Learning[J]. Computers in Biology and Medicine, 2018,103:64-70.
|
[7] |
FU H, WANG B, SHEN J, et al. Evaluation of Retinal Image Quality Assessment Networks in Different Color-Spaces[C]//Medical Image Computing and Computer Assisted Intervention. Heidelberg:Springer, 2019:48-56.
|
[8] |
SHI C, LEE J, WANG G, et al. Assessment of Image Quality on Color Fundus Retinal Images Using the Automatic Retinal Image Analysis[J]. Scientific Reports, 2022, 12(1):10455.
doi: 10.1038/s41598-022-13919-2
pmid: 35729197
|
[9] |
GUO T, LIANG Z, GU Y, et al. Learning for Retinal Image Quality Assessment with Label Regularization[J]. Computer Methods and Programs in Biomedicine, 2023,228:107238.
|
[10] |
HE K, SUN J. Convolutional Neural Networks at Constrained Time Cost[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway:IEEE, 2015:5353-5360.
|
[11] |
LUO W, LI Y, URTASUN R, et al. Understanding the Effective Receptive Fifield in Deep Convolutional Neural Networks[C]//Neural Information Processing Systems(NeurIPS). San Diego: NeurIPS, 2016:4898-4906.
|
[12] |
LIU Z, LIN Y, CAO Y, et al. Swin Transformer:Hierarchical Vision Transformer Using Shifted Windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE, 2021:10012-10022.
|
[13] |
KHAN S, NASEER M, HAYAT M, et al. Transformers in Vision:A Survey[J]. ACM Computing Surveys(CSUR), 2022, 54(10s):1-41.
|
[14] |
SHUMAN D I, NARANG S K, FROSSARD P, et al. The Emerging Field of Signal Processing on Graphs:Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains[J]. IEEE Signal Processing Magazine, 2013, 30(3):83-98.
|
[15] |
WANG Q, WU B, ZHU P, et al. ECA-Net:Efficient Channel Attention for Deep Convolutional Neural Networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2020:11534-11542.
|
[16] |
SUN M, YUAN Y, ZHOU F, et al. Multi-Attention Multi-Class Constraint for Fine-Grained Image Recognition[C]//Proceedings of the European Conference on Computer Vision(ECCV). Heidelberg:Springer, 2018:805-821.
|
[17] |
SUN G, CHOLAKKAL H, KHAN S, et al. Fine-Grained Recognition:Accounting for Subtle Differences Between Similar Classes[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2020:12047-12054.
|
[18] |
CUADROS J, BRESNICK G. EyePACS:An Adaptable Telemedicine System for Diabetic Retinopathy Screening[J]. Journal of Diabetes Science and Technology, 2009, 3(3):509-516.
|
[19] |
PACHADE S, PORWAL P, THULKAR D, et al. Retinal Fundus Multi-Disease Image Dataset(RFMID):A Dataset for Multi-Disease Detection Research[J]. Data, 2021, 6(2):14.
|
[20] |
XU Z, ZOU B, LIU Q. A Dark and Bright Channel Prior Guided Deep Network for Retinal Image Quality Assessment[J]. Biocybernetics and Biomedical Engineering, 2022, 42(3):772-783.
|
[21] |
梁礼明, 董信, 李仁杰, 等. 基于注意力机制多特征融合的视网膜病变分级算法[J]. 光电工程, 2023, 50(1):100-112.
|
|
LIANG Liming, DONG Xin, LI Renjie, et al. Classification Algorithm of Retinopathy Based on Attention Mechanism and Multi Feature Fusion[J]. Opto-Electronic Engineering, 2023, 50(1):100-112.
|
[22] |
OU F Z, WANG Y G, ZHU G. A Novel Blind Image Quality Assessment Method Based on Refined Natural Scene Statistics[C]//2019 IEEE International Conference on Image Processing(ICIP).Piscataway:IEEE, 2019: 1004-1008.
|
[23] |
YAN Q, GONG D, ZHANG Y. Two-Stream Convolutional Networks for Blind Image Quality Assessment[J]. IEEE Transactions on Image Processing, 2018, 28(5):2200-2211.
|
[24] |
梁礼明, 雷坤, 詹涛, 等. 基于锐度感知最小化与多色域双级融合的视网膜图片质量分级[J]. 科学技术与工程, 2022, 22(32):14289-14297.
|
|
LIANG Liming, LEI Kun, ZHAN Tao, et al. Retinal Image Quality Based on Sharpness Perception Minimization and Multi-Gamut Bi-Level Fusion[J]. Science Technology and Engineering, 2022, 22(32):14289-14297.
|
[25] |
SONG J, YANG R. Feature Boosting,Suppression,and Diversification for Fine-Grained Visual Classification[C]//2021 International Joint Conference on Neural Networks(IJCNN).Piscataway:IEEE, 2021: 1-8.
|