西安电子科技大学学报 ›› 2024, Vol. 51 ›› Issue (3): 9-18.doi: 10.19665/j.issn1001-2400.20240203

• 信息与通信工程 • 上一篇    下一篇

面向带宽受限场景的高效语义通信方法

刘伟(), 王孟洋(), 白宝明()   

  1. 西安电子科技大学 通信工程学院,陕西 西安 710071
  • 收稿日期:2023-06-16 出版日期:2024-06-20 发布日期:2024-03-13
  • 作者简介:刘 伟(1977—),男,教授,博士,E-mail:liuweixd@mail.xidian.edu.cn
    王孟洋(1998—),男,西安电子科技大学硕士研究生,E-mail:mywang_8@stu.xidian.edu.cn
    白宝明(1966—),男,教授,博士,E-mail:bmbai@mail.xidian.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFA1000500);陕西省重点研发计划项目(2022ZDLGY05-05)

Efficient semantic communication method for bandwidth constrained scenarios

LIU Wei(), WANG Mengyang(), BAI Baoming()   

  1. School of Telecommunications Engineering,Xidian University,Xi’an 710071,China
  • Received:2023-06-16 Online:2024-06-20 Published:2024-03-13

摘要:

语义通信为通信系统优化和性能提升提供了新的研究角度,然而,目前语义通信的研究忽略了通信开销的影响,未考虑语义通信性能和通信开销的关系,导致带宽资源受限时语义通信性能难以提升。为此,针对带宽受限场景,提出一种基于信息瓶颈的语义通信方法。首先,该方法采用Transformer模型进行语义和信道联合编解码,并设计特征选择模块以识别和删除冗余语义信息,构建了端到端语义通信模型;进而考虑语义通信性能与通信开销之间的折衷关系,基于信息瓶颈理论设计损失函数,在保证语义通信性能的同时,降低通信开销,完成语义通信模型的训练和优化。实验结果显示,在欧洲议会平行语料库上,与基线模型相比,所提方法在保证通信性能的同时可降低约20%~30%的通信开销,在相同带宽条件下该方法的BLEU分数可提升约5%。实验结果表明,所提方法可以有效降低语义通信开销,从而提升带宽资源受限场景下的语义通信性能。

关键词: 语义通信, 通信系统, 深度学习, Transformer, 特征选择模块, 信息瓶颈理论

Abstract:

Semantic communication provides a new research perspective for communication system optimization and performance improvement.However,current research on semantic communication ignores the impact of communication overhead and does not consider the relationship between semantic communication performance and communication overhead,resulting in difficulty in improving semantic communication performance when the bandwidth resource is limited.Therefore,an information bottleneck based semantic communication method for text sources is proposed.First,the Transformer model is used for semantic and channel joint encoding and decoding,and a feature selection module is designed to identify and delete redundant information,and then an end-to-end semantic communication model is constructed in the method;Second,considering the tradeoff between semantic communication performance and communication cost,a loss function is designed based on the information bottleneck theory to ensure the semantic communication performance,reduce the communication cost,and complete the training and optimization of the semantic communication model.Experimental results show that on the proceedings of the European Parliament,compared with the baseline model,the proposed method can reduce communication overhead by 20%~30% while ensuring communication performance.Under the same bandwidth conditions,the BLEU score of this method can be increased by 5%.Experimental results prove that the proposed method can effectively reduce the semantic communication overhead,thereby improving semantic communication performance when the bandwidth resource is limited.

Key words: semantic communication, communication systems, deep learning, transformer, feature selection module, information bottleneck theory

中图分类号: 

  • TN911.22