西安电子科技大学学报 ›› 2024, Vol. 51 ›› Issue (4): 226-238.doi: 10.19665/j.issn1001-2400.20240303

• 计算机科学与技术 & 网络空间安全 • 上一篇    

利用可逆网络的音频藏图算法

张晓虹(), 项世军(), 黄红斌()   

  1. 暨南大学 信息科学技术学院,广东 广州 510632
  • 收稿日期:2023-11-16 出版日期:2024-08-20 发布日期:2024-03-21
  • 通讯作者: 项世军(1974—),男,教授,E-mail:txiangshijun@jnu.edu.cn
  • 作者简介:张晓虹(1998—),女,暨南大学硕士研究生,E-mail:2551748721@qq.com
    黄红斌(1966—),男,副教授,E-mail:thhb@jnu.edu.cn
  • 基金资助:
    国家自然科学基金(62272197);广东省基础与应用基础研究基金(2023A1515011928)

Hiding images in audio based on invertible neural networks

ZHANG Xiaohong(), XIANG Shijun(), HUANG Hongbin()   

  1. School of Information Science and Technology,Jinan University,Guangzhou 510632,China
  • Received:2023-11-16 Online:2024-08-20 Published:2024-03-21

摘要:

可逆网络因其具有天然可逆的结构,非常适用于信息隐藏领域。图像能以生动直观、有层次的方式传递信息,而音频是一种广泛传播和使用的媒体文件,具有较大的嵌入容量,因此在音频中隐藏图像具有较高的研究和应用价值。在音频藏图任务中,如何表征音频和图像数据以及如何在减少音频失真的同时提高重建图像的质量是两个重要的问题。针对这两个问题,提出了一种基于可逆网络的音频藏图算法。对于数据特征表示,受到JPEG图像压缩中数据处理方法的启发,提出了图像特征提取与表示模块,该模块对彩色图像依次进行分块离散余弦变换、锯齿扫描和高低频分离操作,提取出图像的频域特征并得到其一维表示。此外,为了减少音频失真并提高重建图像的质量,利用小波变换分离音频的高低频分量并引入可逆网络将秘密图像嵌入到载体音频的高频区域中。实验结果表明,所提出的算法在实现高嵌入率的同时,能生成质量更高的隐写音频以及重建出更加还原的彩色图像,且算法具有较高的安全性。

关键词: 隐写, 图像隐藏, 可逆网络, 小波变换, 离散余弦变换

Abstract:

Invertible Neural Networks(INNs) are well suited for the field of information hiding due to the fact that their inherent reversible structure.Images are able to efficiently convey information in a vivid and hierarchical manner,while audio is a widely used and distributed media file with a large embedding capacity.Therefore,hiding images in audio is of high research and application value.In the task of hiding images in audio,how to represent audio and image data and how to improve the quality of reconstructed images while reducing audio distortion are two important issues.To address these two problems,this paper proposes an algorithm based on INNs to hide images in audio.Inspired by the data processing methods in JPEG image compression,an image feature extraction and representation module is proposed for data feature representation.This module performs block-wise discrete cosine transform,Zigzag scanning,and high-low frequency separation operation on color images,extracting the frequency domain features of the image and obtaining its one-dimensional representation.In addition,in order to reduce audio distortion and improve the quality of reconstructed images,this paper uses the wavelet transform to separate the high and low frequency components of audio and introduces INNs to embed the secret image into the high-frequency region of the cover audio.Experimental results show that the proposed algorithm can generate higher quality steganographic audio and reconstruct more restored color images while achieving a high embedding rate,and that the proposed algorithm exhibits good security.

Key words: steganography, image hiding, invertible neural networks, wavelet transforms, discrete cosine transforms

中图分类号: 

  • TP309.7