[1] |
MU C H, ZENG Q Z, LIU Y, et al. A Two-Branch Network Combined with Robust Principal Component Analysis for Hyperspectral Image Classification[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(12):2147-2151.
|
[2] |
BENEDIKTSSON J A, PALMASON J A, SVEINSSON J R. Classification of Hyperspectral Data from Urban Areas Based on Extended Morphological Profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3):480-491.
|
[3] |
SAMANIEGO L, BÁRDOSSY A, SCHULZ K. Supervised Classification of Remotely Sensed Imagery Using a Modified k-NN Technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(7):2112-2125.
|
[4] |
MELGANI F, BRUZZONE L. Classification of Hyperspectral Remote Sensing Images with Support Vector Machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8):1778-1790.
|
[5] |
CHEN Y, LIN Z, ZHAO X, et al. Deep Learning-Based Classification of Hyperspectral Data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2094-2107.
|
[6] |
MU C H, DONG Z D, LIU Y. A Two-Branch Convolutional Neural Network Based on Multi-Spectral Entropy Rate Superpixel Segmentation for Hyperspectral Image Classification[J]. Remote Sensing, 2022; 14(7):1569.
|
[7] |
杨建功, 汪西莉, 刘侍刚. 融合谱-空域信息的DBM高光谱图像分类方法[J]. 西安电子科技大学学报, 2019, 46(3):109-115.
|
|
YANG Jiangong, WANG Xili, LIU Shigang. Spectral-Spatial Classification of Hyperspectral Images Using Deep Boltzmann Machines. Journal of Xidian University, 2019, 46(3):109-115.
|
[8] |
LI W, CHEN C, ZHANG M, et al. Data Augmentation for Hyperspectral Image Classification with Deep CNN[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 16(4):593-597.
|
[9] |
SHI M, REN J. ALightweight Dense Relation Network with Attention for Hyperspectral Image Few-Shot Classification[J]. Engineering Applications of Artificial Intelligence, 2023, 126:106993.
|
[10] |
孙一帆, 余旭初, 谭熊, 等. 面向小样本高光谱影像分类的轻量化关系网络[J]. 武汉大学学报(信息科学版), 2022, 47(8):1336-1348.
|
|
SUN Yifan, YUXuchu, TAN Xiong, et al. Lightweight Relational Network for Small Sample Hyperspectral Image Classification[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8):1336-1348.
|
[11] |
LIU B, YU X, ZHANG P, et al. A Semi-Supervised Convolutional Neural Network for Hyperspectral Image Classification[J]. Remote Sensing Letters, 2017, 8(9):839-848.
|
[12] |
LI Z, GUO H, CHEN Y, et al. Few-Shot Hyperspectral Image Classification with Self-Supervised Learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-17.
|
[13] |
DI X, XUE Z, ZHANG M. ActiveLearning-Driven Siamese Network for Hyperspectral Image Classification[J]. Remote Sensing, 2023, 15(3):752.
|
[14] |
左溪冰, 刘智, 金飞, 等. 面向高光谱影像小样本分类的全局-局部特征自适应融合方法[J]. 地球信息科学学报, 2023, 25(8):1699-1716.
doi: 10.12082/dqxxkx.2023.230058
|
|
ZUO Xibing, LIU Zhi, JIN Fei, et al. Global-Local Feature Adaptive Fusion Method for Small Sample Classification of Hyperspectral Images[J]. Journal of Geo-information Science, 2023, 25(8):1699-1716.
|
[15] |
NING Y, PENG J, LIU Q, et al. ContrastiveLearning Based on Category Matching for Domain Adaptation in Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-14.
|
[16] |
WANG H, LIU X. Focal Transfer Graph Network and Its Application in Cross-Scene Hyperspectral Image Classification[J]. IEEE Transactions on Artificial Intelligence, 2024(Early Access):1-13.
|
[17] |
YANG Y, XU Y, WU Z, et al. Cross-Scene Classification of Hyperspectral Images via Generative Adversarial Network in Latent Space[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-17.
|
[18] |
LI Z, LIU M, CHEN Y, et al. Deep Cross-Domain Few-Shot Learning for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5501618.
|
[19] |
ZHANG Y, LI W, ZHANG M, et al. Graph Information Aggregation Cross-Domain Few-Shot Learning for Hyperspectral Image Classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(2):1912-1925.
|
[20] |
XI B, LI J, LI Y, et al. Few-Shot Learning with Class-Covariance Metric for Hyperspectral Image Classification[J]. IEEE Transactions on Image Processing, 2022, 31:5079-5092.
|
[21] |
LIU Q, PENG J, NING Y, et al. Refined Prototypical Contrastive Learning for Few-Shot Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5506214.
|
[22] |
KHOSLA P, TETERWAK P, WANG C, et al. Supervised Contrastive Learning[J]. Advances in Neural Information Processing Systems, 2020, 33:18661-18673.
|
[23] |
PAL D, BUNDELE V, SHARMA R, et al. Few-Shot Open-Set Recognition of Hyperspectral Images with Outlier Calibration Network[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway:IEEE, 2022:3801-3810.
|
[24] |
SIMON C, KONIUSZ P, NOCK R, et al. Adaptive Subspaces for Few-Shot Learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2020:4136-4145.
|
[25] |
BAI J, HUANG S, XIAO Z, et al. Few-Shot Hyperspectral Image Classification Based on Adaptive Subspaces and Feature Transformation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5523917.
|
[26] |
HUANG W, SHI Y, XIONG Z, et al. Semi-Supervised Bidirectional Alignment for Remote Sensing Cross-Domain Scene Classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 195:192-203.
doi: 10.1016/j.isprsjprs.2022.11.013
pmid: 36726963
|