西安电子科技大学学报 ›› 2024, Vol. 51 ›› Issue (6): 117-131.doi: 10.19665/j.issn1001-2400.20240311

• 计算机科学与技术 & 网络空间安全 • 上一篇    下一篇

深度语句级实体关系抽取综述

赵从健(), 焦一源(), 李雁妮()   

  1. 西安电子科技大学 计算机科学与技术学院,陕西 西安 710071
  • 收稿日期:2023-12-20 出版日期:2024-10-25 发布日期:2024-10-25
  • 通讯作者: 李雁妮(1962—),女,教授,E-mail:yannili@mail.xidian.edu.cn
  • 作者简介:赵从健†(1997—),男,硕士,E-mail:zhaocj951@gmail.com;
    焦一源†(1995—),男,西安电子科技大学博士研究生,Email:yiyuan_jiao@stu.xidian.edu.cn
    第一联系人:

    †—共同一作

  • 基金资助:
    国家自然科学基金面上项目(62176202)

Overview of deep sentence-level entity relation extraction

ZHAO Congjian(), JIAO Yiyuan(), LI Yanni()   

  1. School of Computer Science and Technology,Xidian University,Xi’an 710071,China
  • Received:2023-12-20 Online:2024-10-25 Published:2024-10-25

摘要:

语句级实体关系抽取(以下简称实体关系抽取)意指从给定的一条语句中抽取其中一对实体之间的语义关系,它是人工智能中知识图谱构建、自然语言处理、智能问答、Web搜索等应用的重要基础,是当前人工智能中最前沿的基础研究难题。随着深度神经网络在多个领域的成功应用,现已出现了多种基于深度神经网络模型的实体关系抽取算法。近几年来,随着持续地处理与理解文本信息的需求,开始出现了一些实体关系抽取与持续学习相结合的深度持续实体关系抽取算法。该类算法可以使模型在不遗忘已学习的旧任务知识的同时,可持续高效地进行序列性的多个任务的实体关系抽取。文中将对现有典型的深度实体关系抽取和持续实体关系抽取方法,从其深度网络模型、算法框架、性能特征等方面进行深入分析综述,并指出其研究发展趋势,为实体关系抽取的深入研究起到抛砖引玉的作用。

关键词: 深度学习, 自然语言处理, 实体关系抽取, 持续学习, 持续实体关系抽取

Abstract:

Entity relation extraction at statement level(RE) refers to the extraction of semantic relationship between an entity pair from a given statement.It is an important basis for the construction of knowledge graph,natural language processing(NLP),intelligent question answering,Web search and other applications in artificial intelligence(AI),and it is the most cutting-edge basic hot research issue in AI.With the successful application of deep neural networks(DNNs),a variety of RE algorithms based on DNNs have emerged.In recent years,with the requirement of continuous processing and understanding of text information,some deep continuous of entity relation extraction(CRE) algorithms by combining entity relationship extraction and continual learning(CL) have emerged.This kind of algorithms can enable the model to carry out sequential RE of multiple tasks sustainably and efficiently without forgetting the learned knowledge of old tasks.In this paper,various representative deep RE and CRE methods in recent years are surveyed from their deep network model,algorithm framework and performance characteristics,and the research development trends of the RE and CRE are pointed out.We sincerely hope that the extensive survey will inspire more good ideas on the research of the RE and CRE.

Key words: deep learning, natural language processing, entity relation extraction(RE), continuous learning(CL), continuous entity relation extraction(CRE)

中图分类号: 

  • TP183