西安电子科技大学学报 ›› 2024, Vol. 51 ›› Issue (5): 122-135.doi: 10.19665/j.issn1001-2400.20240502

• 计算机科学与技术 & 网络空间安全 • 上一篇    下一篇

超像素分割和波段分割的高光谱图像去噪

李华君1(), 蒋俊正2,3(), 周芳4(), 全英汇3()   

  1. 1.桂林电子科技大学 信息与通信学院,广西壮族自治区 桂林 541004
    2.西安电子科技大学 杭州研究院,浙江 杭州 311231
    3.西安电子科技大学 电子工程学院,陕西 西安 710071
    4.中国计量大学 信息工程学院,浙江 杭州 310018
  • 收稿日期:2023-11-23 出版日期:2024-05-23 发布日期:2024-05-23
  • 通讯作者: 周 芳(1984—),女,副教授,E-mail:zhoufang1026@guet.edu.cn
  • 作者简介:李华君(1999—),男,桂林电子科技大学硕士研究生,E-mail: 22022303063@mails.guet.edu.cn
    蒋俊正(1983—),男,教授,E-mail: jiangjunzheng@xidian.edu.cn
    全英汇(1981—),男,教授,E-mail:yhquan@mail.xidian.edu.cn
  • 基金资助:
    广西自然科学杰出青年基金(2021GXNSFFA220004);广西科技基地和人才专项(桂科AD21220112);国家自然科学基金(62261014);国家自然科学基金(62171146);广西创新驱动发展专项(桂科AA21077008);广西研究生教育创新计划项目(YCBZ2023137)

Hyperspectral image denoising based on superpixel segmentation and band segmentation

LI Huajun1(), JIANG Junzheng2,3(), ZHOU Fang4(), QUAN Yinghui3()   

  1. 1. School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,China
    2. Hangzhou Institute of Technology,Xidian University,Hangzhou 311231,China
    3. School of Electronic Engineering,Xidian University,Xian 710071,China
    4. College of Information Engineering,ChinaJiliang University,Hangzhou 310018,China
  • Received:2023-11-23 Online:2024-05-23 Published:2024-05-23

摘要:

针对现有的高光谱图像去噪算法采用逐波段或者全波段方式去噪,未能充分利用高光谱图像波段相似性的问题,提出了超像素分割和波段分割的高光谱图像去噪算法。文中将构建双层图模型,包括上层图和下层图模型。首先,对高光谱图像应用超像素分割技术,得到一系列的超像素。对超像素内的像素建模为节点,像素之间用边连接,构建一系列下层图,从而充分利用高光谱图像的空间信息和保留边界信息。根据超像素分割结果,沿着波段维分割,形成超像素体,以充分利用高光谱图像的波段相似性。将超像素体建模为节点,超像素体之间用边连接,构建上层图。基于构建的图结构和图分割方式,将高光谱图像去噪问题归结为一系列的优化问题,在优化问题中利用克罗内克乘积图重新定义了图拉普拉斯正则项。最后,实验结果表明,与现有算法相比,文中所提算法具有更高的平均峰值信噪比、平均结构相似性和光谱差异性。

关键词: 高光谱图像去噪, 图信号处理, 超像素分割, 波段分割, 图拉普拉斯正则项

Abstract:

Existing hyperspectral image denoising algorithms adopt a band-by-band or full-band approach to denoising,which fails to make full use of the similarity of hyperspectral image bands.To address this problem,this paper proposes a hyperspectral image denoising algorithm based on superpixel segmentation and band segmentation.In this paper,we construct a two-layer graph,including the upper and lower layer graphs.First,superpixel segmentation is applied to the hyperspectral image to obtain a series of superpixels.In order to utilize the spatial information on the hyperspectral image and retain the boundary information,the pixels within the superpixels are modeled as nodes with the pixels connected with edges to construct a series of lower layer graphs.In order to utilize the band similarity of the hyperspectral image,superpixel volumes are formed by segmenting along the band dimension based on the superpixel segmentation results with the superpixel volumes modeled as nodes,and the superpixel volumes connected with edges to construct an upper layer graph.Based on the graph structure and graph segmentation,the hyperspectral image denoising problem is reduced to a series of optimization problems,in which the graph Laplacian regularization is redefined using the Kronecker graph product.Finally,experimental results show that the proposed algorithm has a higher mean signal-to-noise ratio,mean structural similarity index measure and erreur relative globale adimensionnelle de synthese compared with the existing algorithms.

Key words: hyperspectral image denoising, graph signal processing, superpixel segmentation, band segmentation, graph Laplacian regularization

中图分类号: 

  • TP751