[1] |
KHAN M J, KHAN H S, YOUSAF A, et al. Modern Trends in Hyperspectral Image Analysis:A Review[J]. IEEE Access, 2018, 6:14118-14129.
|
[2] |
CAI W Y, JIANG J Z, OUYANG S. Hyperspectral Image Denoising Using Adaptive Weight Graph Total Variation Regularization and Low-Rank Matrix Recovery[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5.
|
[3] |
BIOUCAS-DIAS J M, PLAZA A, CAMPS-VALLS G, et al. Hyperspectral Remote Sensing Data Analysis and Future Challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(2):6-36.
|
[4] |
ZENG H J, HUANG S G, CHEN Y Y, et al. All of Low-Rank and Sparse:A Recast Total Variation Approach to Hyperspectral Denoising[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16:7357-7373.
|
[5] |
ATKINSON I, KAMALABADI F, JONES D L. Wavelet-Based Hyperspectral Image Estimation[C]// IGARSS 2003.2003 IEEE International Geoscience and Remote Sensing Symposium.Proceedings(IEEE Cat.No.03CH37477).Piscataway:IEEE, 2003:743-745.
|
[6] |
ZHANG H. Hyperspectral Image Denoising with Cubic Total Variation Model[J]. ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2012:95-98.
|
[7] |
WANG Y, PENG J, ZHAO Q, et al. Hyperspectral Image Restoration via Total Variation Regularized Low-Rank Tensor Decomposition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(4):1227-1243.
|
[8] |
ZHANG H, HE W, ZHANG L, et al. Hyperspectral Image Restoration Using Low-Rank Matrix Recovery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8):4729-4743.
|
[9] |
蔡明娇, 蒋俊正, 蔡万源, 等. 张量分解和自适应图全变分的高光谱图像去噪[J]. 西安电子科技大学学报, 2024, 51(2):157-169.
|
|
CAI Mingjiao, JIANG Junzheng, CAI Wanyuan, et al. Hyperspectral Image Denoising Based on Tensor Decomposition and Adaptive Weight Graph Total Variation[J]. Journal of Xidian University, 2024, 51(2):157-169.
|
[10] |
HE C, SUN L, HUANG W, et al. TSLRLN:Tensor Subspace Low-Rank Learning with Non-Local Prior for Hyperspectral Image Mixed Denoising[J]. Signal Processing, 2021, 184:108060.
|
[11] |
HE W, YAO Q, LI C, et al. Non-Local Meets Global:An Iterative Paradigm for Hyperspectral Image Restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4):2089-2107.
|
[12] |
LIU Y, SHAN C, GAO Q, et al. Hyperspectral Image Denoising via Minimizing the Partial Sum of Singular Values and Superpixel Segmentation[J]. Neurocomputing, 2019, 330:465-482.
|
[13] |
BEHROOZI Y, YAZDI M, ASLI A Z. Hyperspectral Image Denoising Based on Superpixel Segmentation Low-Rank Matrix Approximation and Total Variation[J]. Circuits Systems and Signal Processing, 2022, 41(6):3372-3396.
|
[14] |
陈俊杰, 邓洪高, 马谋, 等. GCN-GRU:一种无线传感器网络故障检测模型[J]. 西安电子科技大学学报, 2022, 49(5):60-67.
|
|
CHEN Junjie, DENG Honggao, MA Mou, et al. GRN-GRU:AFault Detection Model for Wireless Sensor Networks[J]. Journal of Xidian University, 2022, 49(5):60-67.
|
[15] |
DUDGEON D E, MERSEREAU R M. Multidimensional Digital Signal Processing[M]. Englewood Cliffs: Prentice-Hall,1983.
|
[16] |
TAN Z, ZHU Y, LIU B. Learning Spatial-Temporal Feature with Graph Product[J]. Signal Processing, 2023, 210:109062.
|
[17] |
HU W, PANG J, LIU X, et al. Graph Signal Processing for Geometric Data and Beyond:Theory and Applications[J]. IEEE Transactions on Multimedia, 2022, 24:3961-3977.
|
[18] |
ACHANTA R, SHAJI A, SMITH K, et al. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282.
pmid: 22641706
|
[19] |
DONG W, WOZNIAK M, WU J S, et al. Denoising Aggregation of Graph Neural Networks by Using Principal Component Analysis[J]. IEEE Transactions on Industrial Informatics, 2023, 19(3):2385-2394.
|
[20] |
CAI J F, CANDèS E J, SHEN Z. A Singular Value Thresholding Algorithm for Matrix Completion[J]. SIAM Journal on Optimization, 2010, 20(4):1956-1982.
|
[21] |
ZHUANG L, FU X, NG M K, et al. Hyperspectral Image Denoising Based on Global and Nonlocal Low-Rank Factorizations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(12):10438-10454.
|
[22] |
HYDICE Image of Washington DC Mall(2023)[DB/OL].[2023-08-01]. https://engineering.purdue.edu/-biehl/MultiSpec/hyperspectral.html.
|
[23] |
AVIRIS Image of Cuprite(2023)[DB/OL].[2023-08-01]. https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes.
|
[24] |
ZHANG H Y, CHEN H Y, YANG G Y, et al. LR-Net:Low-Rank Spatial-Spectral Network for Hyperspectral Image Denoising[J]. IEEE Transactions on Image Processing, 2021, 30:8743-8758.
|