西安电子科技大学学报 ›› 2024, Vol. 51 ›› Issue (5): 9-23.doi: 10.19665/j.issn1001-2400.20240503
魏雯婷1,2(), 伏丽莹1(
), 王琨1,2(
), 卢雪玉1(
), 周兆军3(
)
收稿日期:
2024-01-16
出版日期:
2024-05-29
发布日期:
2024-05-29
作者简介:
魏雯婷(1988—),女,副教授,E-mail:wtwei@xidian.edu.cn;基金资助:
WEI Wenting1,2(), FU Liying1(
), WANG Kun1,2(
), LU Xueyu1(
), ZHOU Zhaojun3(
)
Received:
2024-01-16
Online:
2024-05-29
Published:
2024-05-29
摘要:
卫星互联网呈现全球覆盖、灵活接入、可靠传输的发展趋势,是构建广覆盖、巨连接、立体化、全方位、全天候的空天地一体化信息网络的关键。由于星座规模快速扩张、网络拓扑高度复杂以及业务需求多元动态,卫星互联网的传输压力与日俱增。路由技术负责卫星之间数据传输路径选择与数据转发,是提升星间数据传输效率和保障网络服务质量的关键,在高移动性、高时延、高动态通信以及空间环境复杂的星间组网环境中面临诸多挑战。以卫星互联网星间路由技术为研究对象,概述了卫星互联网的基本组成架构及工作模式。根据星间组网所面临的挑战,从动态信息感知、网络故障建模及跨层混合组网等方面系统梳理了星间路由的主要技术路线并分析了星间路由技术的研究进展,以及现有的各类解决方法在星上计算及存储能力受限时的适用性。最后结合当前卫星互联网路由技术的瓶颈与新兴网络技术,对未来卫星互联网路由技术进行了展望。
中图分类号:
魏雯婷, 伏丽莹, 王琨, 卢雪玉, 周兆军. 卫星互联网路由技术综述[J]. 西安电子科技大学学报, 2024, 51(5): 9-23.
WEI Wenting, FU Liying, WANG Kun, LU Xueyu, ZHOU Zhaojun. Survey of routing technologies for the satellite Internet[J]. Journal of Xidian University, 2024, 51(5): 9-23.
表1
基于动态信息感知的路由技术对比"
路由策略 | 动态信息 | 技术方案 | 优化目标 | 计算模式 | 其他性能 | |
---|---|---|---|---|---|---|
动态信息感知 解决途径 | 其他技术 | |||||
Topology-aware routing[ | 网络拓扑 | 星座特征度量 | 时延 跳数 | 未说明 | 低计算开销 | |
SDN satellite routing[ | 网络拓扑 | 虚拟拓扑 | SDN DFS+Dijkstra | 时延 丢包率 | 集中式 | 可扩展性 |
ASER[ | 网络拓扑 | 虚拟拓扑 分域路由 | 链路状态路由协议 | 计算时间 丢包率 时延 吞吐 | 分布式 | 高容错性 低计算开销 |
动态缓存 分配策略[ | 业务需求 | 流量预测 自适应缓存分配 | 时延 丢包率 负载均衡 | 分布式 | ||
IADR[ | 网络拓扑 | 星间链路属性 动态建模 | SDN 多属性决策 问题建模 | 丢包率 时延 吞吐 | 集中式 | |
SALB[ | 网络拓扑 业务需求 | 动态监测链路状态 动态SPT算法 | 负载均衡 丢包率 时延 吞吐 | 分布式 | 高容错性 低计算开销 | |
DQN-IR[ | 网络拓扑 业务需求 | 环境动态建模 深度强化学习 | 时延 | 分布式 | 低通信开销 | |
多业务 路由算法[ | 网络拓扑 业务需求 | 拓扑快照 | 业务分类 多目标动态优化 | 负载均衡 时延 剩余带宽 误分组率 | 分布式 | |
FSRS[ | 业务需求 | 需求分类 时延预测 | 模糊逻辑 | 时延 吞吐 丢包率 流量分布 | 未说明 | 高通信效率 |
多QoS约束 路由算法[ | 网络拓扑 业务需求 | 虚拟拓扑 多QoS约束建模 | 蚁群算法 | 时延 丢包率 | 分布式 | 迭代次数 |
NCMCR[ | 网络拓扑 业务需求 | 虚拟拓扑 | 非停等式ACK 网络编码 | 时延 吞吐 负载均衡 | 分布式 | 低时间开销 |
Link state satellite routing[ | 网络拓扑 | 逻辑拓扑+真实位置 | 星载自主控制 | 时延 到达率 | 分布式 | 高容错性 |
CGR[ | 网络拓扑 | 接触图 | 时延 剩余带宽 | 分布式 | 低计算开销 | |
IUDR[ | 网络拓扑 | 时空进化图 星间链路动态建模 | SDN 多目标决策优化 | 丢包率 时延 吞吐 | 集中式 | |
Temporal graph-based deterministic routing[ | 网络拓扑 空间资源 | 时间扩展图 | 线性规划 | 时延 资源利用率 | 集中式 | 低计算开销 |
表2
基于网络故障建模的路由技术对比"
路由策略 | 故障场景 | 技术方案 | 优化目标 | 层次结构 | 其他性能 | |
---|---|---|---|---|---|---|
网络故障建模 解决途径 | 其他技术 | |||||
OPSPF[ | 链路故障 | 卫星节点位置预测 动态链路状态泛洪 | 静态最短路径算法 | 路由收敛性 时延 丢包率 | LEO | 低计算开销 |
MCMP[ | 链路故障 | 时空图建模 | 最短路径算法 | 时延 | EO | 低能源开销 |
MTRS[ | 链路故障 | 离散时空图建模 | Min-Max优化建模 | 时延 | ||
PFPR[ | 链路故障 | 故障概率建模 设置备选链路 | 虚拟节点 虚拟拓扑 服务需求分类 | 时延 吞吐 丢包率 | LEO/MEO | |
双层抗毁路由算法[ | 节点故障 | LEO卫星辅助路由 | 服务需求分类 | 吞吐 时延 时延抖动 丢包率 | GEO/LEO | 遭遇攻击时 的网络交付 能力 |
表3
基于跨层混合组网的路由技术对比"
路由策略 | 层次结构 | 网络特点 | 技术方案 | 优化目标 | 计算模式 | 其他性能 | |
---|---|---|---|---|---|---|---|
混合组网 解决途径 | 其他技术 | ||||||
PFPR[ | MEO+LEO | 实现集中控制 加快网络收敛 | 虚拟节点 主备链路共映射 | 虚拟拓扑 服务分类 故障概率 | 丢包率 时延 吞吐量 | 分布式 | |
按序路由 算法[ | GEO+LEO | 分层分簇传输 缓解网络拥塞 | HCR 按需TORA | Dijkstra | 负载均衡 时延 吞吐 丢包率 | 分布式 | |
优化的分层 路由算法[ | GEO+LEO | 分层分簇传输 缓解网络拥塞 | 优化TORA Dijkstra | 负载均衡 时延 丢包率 | 分布式 | ||
TCRA[ | GEO+LEO | 实现准确管理 加快网络收敛 | 改进的虚拟 节点策略 卫星分组 | VTLGN 模型 | 时延 丢包率 | 分布式 | 低计算开销 高容错性 |
高效星间 路由算法[ | 天地一体化 | 资源优化分配 实现负载均衡 | SDN | 负载均衡 链路稳定度 时延 吞吐 | 高容错性 低计算开销 | ||
TSHR[ | 星地 | 缓解网络拥塞 保证服务可靠 | TSE选择 优化 | THI卫星 路由 | 时延 吞吐 | ||
CSGI[ | 星地 | 缓解网络拥塞 保证服务可靠 | CSGI | 虚拟拓扑 | 时延 抖动 可达性 收敛时间 | 分布式 | 路由稳定 |
MinFCT[ | 星地 | 缓解网络拥塞 保证服务可靠 | MinFCT | CDNI | 流完成时间 流量 路径占用率 | 可扩展性 | |
基于位置的卫星 网络路由机制[ | 天地一体化 | 资源优化分配 实现负载均衡 | IP编址策略 | 星上临时 路由表 | 带宽利用率 时延 | 分布式 | 低存储开销 高抗毁性 |
DL-aided multi-objective routing[ | 空天地 一体化 | 资源优化分配 实现负载均衡 | 深度学习 辅助的 多目标路由 | 虚拟拓扑 | 时延 吞吐 路径有效期 | 分布式 | |
网络时间确定性 路由算法[ | 天地一体化 | 资源优化分配 实现负载均衡 | 自适应拓扑 发现与维护 | 时变图 分段路由 | 时延 链路利用率 到达率 | 分布式 |
[1] | 崔新雨, 伍杰, 周一青, 等. 空天地一体化融合组网的挑战与关键技术[J]. 西安电子科技大学学报, 2023, 50(1):1-11. |
CUI Xinyu, WU Jie, ZHOU Yiqing, et al. Challenges of and Key Technologies for the Air-Space-Ground Integrated Network[J]. Journal of Xidian University, 2023, 50(1):1-11. | |
[2] | 赛迪顾问物联网产业研究中心,新浪5G. “新基建”之中国卫星互联网产业发展研究白皮书(2020)[R/OL].[2020-05-29]. https://n2.sinaimg.cn/tech/cbc3161f/20200528/SatelliteInternetWhitePaper.pdf. |
[3] |
张更新, 王运峰, 丁晓进, 等. 卫星互联网若干关键技术研究[J]. 通信学报, 2021, 42(8):1-14.
doi: 10.11959/j.issn.1000-436x.2021156 |
ZHANG Gengxin, WANG Yunfeng, DING Xiaojin, et al. Research on Some Key Technologies of Satellite Internet[J]. Journal on Communications, 2021, 42(8):1-14.
doi: 10.11959/j.issn.1000-436x.2021156 |
|
[4] | 贾庆民, 丁瑞, 刘辉, 等. 算力网络研究进展综述[J]. 网络与信息安全学报, 2021, 7(5):1-12. |
JIA Qingmin, DING Rui, LIU Hui, et al. A Review of the Research Progress of Computing Network[J]. Journal of Network and Information Security, 2021, 7(5):1-12. | |
[5] | 卢勇, 赵有健, 孙富春, 等. 卫星网络路由技术[J]. 软件学报, 2014, 25(5):1085-1100. |
LU Yong, ZHAO Youjian, SUN Fuchun, et al. Satellite Network Routing Technology[J]. Journal on Software, 2014, 25(5):1085-1100. | |
[6] |
朱立东, 张勇, 贾高一. 卫星互联网路由技术现状及展望[J]. 通信学报, 2021, 42(8):33-42.
doi: 10.11959/j.issn.1000-436x.2021166 |
ZHU Lidong, ZHANG Yong, JIA Gaoyi. Current Status and Future Prospects of Routing Technologies for Satellite Internet[J]. Journal on Communications, 2021, 42(8):33-42.
doi: 10.11959/j.issn.1000-436x.2021166 |
|
[7] |
陈全, 杨磊, 郭剑鸣, 等. 低轨巨型星座网络:组网技术与研究现状[J]. 通信学报, 2022, 43(5):177-189.
doi: 10.11959/j.issn.1000-436x.2022075 |
CHEN Quan, YANG Lei, GUO Jianming, et al. LEO Mega-Constellation Network:Networking Technologies and State of the Art[J]. Journal on Communications, 2022, 43(5):177-189.
doi: 10.11959/j.issn.1000-436x.2022075 |
|
[8] |
吴巍. 天地一体化信息网络发展综述[J]. 天地一体化信息网络, 2020, 1(1):1-16.
doi: 10.11959/j.issn.2096-8930.20200101 |
WU Wei. Survey on the Development of Space-Integrated-Ground Information Network[J]. Space-Integrated-Ground Information Networks, 2020, 1(1):1-16.
doi: 10.11959/j.issn.2096-8930.20200101 |
|
[9] | RABJERG J W, LEYVA-MAYORGA I, SORET B, et al. Exploiting Topology Awareness for Routing in LEO Satellite Constellations[C]//IEEE Global Communications Conference(GLOBECOM). Piscataway:IEEE, 2021:1-6. |
[10] | JIA M, ZHU S Y, WANG L F, et al. Routing Algorithm with Virtual Topology Toward to Huge Numbers of LEO Mobile Satellite Network Based on SDN[J]. Mobile Networks and Applications, 2018, 23(2):285-300. |
[11] | ZHANG X, YANG Y, XU M W, et al. ASER:Scalable Distributed Routing Protocol for LEO Satellite Networks[C]//IEEE Conference on Local Computer Networks(LCN). Piscataway:IEEE, 2021:65-72. |
[12] |
王卫东, 王程, 王慧文, 等. 基于流量预测的物联网卫星节点动态缓存分配路由策略[J]. 通信学报, 2020, 41(2):25-35.
doi: 10.11959/j.issn.1000-436x.2020038 |
WANG Weidong, WANG Cheng, WANG Huiwen, et al. Dynamic Cache Allocation Routing Strategy for IoT Satellite Nodes Based on Traffic Prediction[J]. Journal on Communications, 2020, 41(2):25-35.
doi: 10.11959/j.issn.1000-436x.2020038 |
|
[13] | HAN Z Z, ZHAO G F, XING Y, et al. Dynamic Routing for Software-Defined LEO Satellite Networks Based on ISL Attributes[C]//IEEE Global Communications Conference(GLOBECOM). Piscataway:IEEE, 2021:1-6. |
[14] | LI X, TANG F L, CHEN L, et al. A State-Aware and Load-Balanced Routing Model for LEO Satellite Networks[C]//IEEE Global Communications Conference(GLOBECOM). Piscataway:IEEE, 2017:1-6. |
[15] | ZUO P L, WANG C, YAO Z, et al. An Intelligent Routing Algorithm for LEO Satellites Based on Deep Reinforcement Learning[C]// IEEE Vehicular Technology Conference(VTC2021-Fall).Piscataway:IEEE, 2021:1-5. |
[16] | YANG D, LIU J, ZHANG R, et al. Multi-Constraint Virtual Network Embedding Algorithm for Satellite Networks[C]//IEEE Global Communications Conference(GLOBECOM). Piscataway:IEEE, 2020:1-6. |
[17] | DUAN C F, JING F, CHANG H T, et al. A Novel Handover Control Strategy Combined with Multi-Hop Routing in LEO Satellite Networks[C]//IEEE International Parallel and Distributed Processing Symposium Workshops(IPDPSW). Piscataway:IEEE, 2018:845-851. |
[18] | MARKOVITZ O, SEGAL M. Advanced Routing Algorithms for Low Orbit Satellite Constellations[C]//IEEE International Conference on Communications(ICC). Piscataway:IEEE, 2021:1-6. |
[19] |
杨力, 孙晶, 潘成胜, 等. 基于多目标决策的LEO卫星网络多业务路由算法[J]. 通信学报, 2016, 37(10):25-32.
doi: 10.11959/j.issn.1000-436x.2016192 |
YANG Li, SUN Jing, PAN Chengsheng, et al. Multi-Service Routing Algorithm for LEO Satellite Networks Based on Multi-Objective Decision[J]. Journal on Communications, 2016, 37(10):25-32.
doi: 10.11959/j.issn.1000-436x.2016192 |
|
[20] | JIANG Z Q, LIU C H, HE S B, et al. A QoS Routing Strategy Using Fuzzy Logic for NGEO Satellite IP Networks[J]. Wireless Networks, 2018, 24(1):295-307. |
[21] |
魏德宾, 刘健, 潘成胜, 等. 卫星网络中基于多QoS约束的蚁群优化路由算法[J]. 计算机工程, 2019, 45(7):114-120.
doi: 10.19678/j.issn.1000-3428.0051284 |
WEI Debin, LIU Jian, PAN Chengsheng, et al. Ant Colony Optimization Routing Algorithm Based on Multiple QoS Constraints in Satellite Networks[J]. Journal of Computer Engineering, 2019, 45(7):114-120. | |
[22] | LIU Z, HAN J, WANG Y, et al. Performance Analysis of Routing Algorithms in Satellite Network under Node Failure Scenarios[J]// IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE, 2014:2838-2843. |
[23] | TANG F L, ZHANG H T, YANG L T. Multipath Cooperative Routing with Efficient Acknowledgement for LEO Satellite Networks[J]. IEEE Transactions on Mobile Computing, 2019, 18(1):179-192. |
[24] | ZHANG L, YAN F, ZHANG Y Y, et al. A Routing Algorithm Based on Link State Information for LEO Satellite Networks[C]//IEEE Globecom Workshops(GC Wkshps). Piscataway:IEEE, 2020:1-6. |
[25] | ZHANG T, LI J D, LI H Y, et al. Application of Time-Varying Graph Theory over the Space Information Networks[J]. IEEE Network, 2020, 34(2):179-185. |
[26] | BURLEIGH S. Dynamic Routing for Delay-Tolerant Networking in Space Flight Operations[C]// SpaceOps 2008 Conference.Reston:AIAA, 2008:3406. |
[27] | HAN Z Z, XU C, ZHAO G F, et al. Time-Varying Topology Model for Dynamic Routing in LEO Satellite Constellation Networks[J]. IEEE Transactions on Vehicular Technology, 2022, 72(3):3440-3454. |
[28] | SHI K Y, WANG J C, LI H Y, et al. Enhancing Resource Utilization of Non-Terrestrial Networks Using Temporal Graph-Based Deterministic Routing[J]. IEEE Transactions on Vehicular Technology, 2024, 73(6):9211-9216. |
[29] | DAI C Q, GUO L F, FU S, et al. Contact Plan Design with Directional Space-Time Graph in Two-Layer Space Communication Networks[J]. IEEE Internet of Things Journal, 2019, 6(6):10862-10874. |
[30] | CHEN L, TANG F L, LI Z T, et al. Time-Varying Resource Graph-Based Resource Model for Space Terrestrial Integrated Networks[C]//IEEE Conference on Computer Communications(INFOCOM). Piscataway:IEEE, 2021:1-10. |
[31] | GIULIARI G, KLENZE T, LEGNER M, et al. Internet Backbones in Space[J]. ACM SIGCOMM Computer Communication Review, 2020, 50(1):25-37. |
[32] | PAN T, HUANG T, LI X, et al. OPSPF:Orbit Prediction Shortest Path First Routing for Resilient LEO Satellite Networks[C]//IEEE International Conference on Communications(ICC). Piscataway:IEEE, 2019:1-6. |
[33] | JIANG F, ZHANG Q Y, YANG Z H, et al. A Space-Time Graph Based Multipath Routing in Disruption-Tolerant Earth-Observing Satellite Networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(5):2592-2603. |
[34] | YUAN P, YANG Z H, ZHANG Q Y, et al. A Minimum Task-Based End-to-End Delivery Delay Routing Strategy with Updated Discrete Graph for Satellite Disruption-Tolerant Networks[C]//2018 IEEE/CIC International Conference on Communications in China(ICCC). Piscataway:IEEE, 2018:293-297. |
[35] | ZHU Y, RUI L L, QIU X S, et al. Double-Layer Satellite Communication Network Routing Algorithm Based on Priority and Failure Probability[C]//International Wireless Communications and Mobile Computing Conference(IWCMC). Piscataway:IEEE, 2019:1518-1523. |
[36] | HANDLEY M. Delay is Not an Option:Low Latency Routing in Space[C]// Proceedings of the ACM Workshop on Hot Topics in Networks. New York: ACM, 2018:85-91. |
[37] | 刘立芳, 吴丹, 郎晓光, 等. GEO/LEO卫星网络的数据传输与抗毁性技术[J]. 西安电子科技大学学报, 2018, 45(1):1-5. |
LIU Lifang, WU Dan, LANG Xiaoguang, et al. Research on Data Transmission and Survivability Technology of the GEO/LEO Satellite Network[J]. Journal of Xidian University, 2018, 45(1):1-5. | |
[38] | FRAIRE J A, FINOCHIETTO J M. Design Challenges in Contact Plans for Disruption-Tolerant Satellite Networks[J]. IEEE Communications Magazine, 2015, 53(5):163-169. |
[39] |
张泰江, 李勇军, 赵尚弘. 基于GEO/LEO双层卫星网络的路由算法优化设计[J]. 计算机工程, 2020, 46(7):198-205.
doi: 10.19678/j.issn.1000-3428.0055504 |
ZHANG Taijiang, LI Yongjun, ZHAO Shanghong. Optimization Design of Routing Algorithm Based on GEO/LEO Double-Layer Satellite Network[J]. Journal of Computer Engineering, 2020, 46(7):198-205. | |
[40] | JIANG M, LIU Y, XU W C, et al. An Optimized Layered Routing Algorithm for GEO/LEO Hybrid Satellite Networks[C]//IEEE Trustcom/BigDataSE/ISPA. Piscataway:IEEE, 2016:1153-1158. |
[41] |
齐小刚, 马久龙, 刘立芳. 基于拓扑控制的卫星网络路由优化[J]. 通信学报, 2018, 39(2):11-20.
doi: 10.11959/j.issn.1000-436x.2018020 |
QI Xiaogang, MA Jiulong, LIU Lifang. Routing Optimization of Satellite Networks Based on Topology Control[J]. Journal on Communications, 2018, 39(2):11-20.
doi: 10.11959/j.issn.1000-436x.2018020 |
|
[42] |
王奎宇, 宋晓勤, 缪娟娟, 等. 基于SDN的高性能QoS保障低轨道卫星星间路由算法[J]. 计算机工程, 2022, 48(5):185-190.
doi: 10.19678/j.issn.1000-3428.0061298 |
WANG Kuiyu, SONG Xiaoqin, MIAO Juanjuan, et al. High-Performance QoS Guarantee Inter-Satellite Routing Algorithm Based on SDN[J]. Journal of Computer Engineering, 2022, 48(5):185-190. | |
[43] | XU H H, LI D S, LIU M L, et al. A Hybrid Routing Algorithm in Terrestrial-Satellite Integrated Network[C]//IEEE/CIC International Conference on Communications in China(ICCC). Piscataway:IEEE, 2020:90-95. |
[44] | ZHANG Y Y, WU Q, LAI Z Q, et al. Enabling Low-Latency-Capable Satellite-Ground Topology for Emerging LEO Satellite Networks[C]//IEEE International Conference on Computer Communications(INFOCOM). Piscataway:IEEE, 2022:1329-1338. |
[45] | BOUTTIER E, DHAOU R, ARNAL F, et al. Improving Content Delivery with Size-Aware Routing in Hybrid Satellite/Terrestrial Networks[C]//IEEE International Conference on Communications(ICC). Piscataway:IEEE, 2018:1-6. |
[46] | LI C X, GUAN L, WU H Q, et al. Dynamic Spectrum Control-Assisted Secure and Efficient Transmission Scheme in Heterogeneous Cellular Networks[J]. Engineering, 2022, 17(10):220-231. |
[47] |
李贺武, 刘李鑫, 刘君, 等. 基于位置的天地一体化网络路由寻址机制研究[J]. 通信学报, 2020, 41(8):120-129.
doi: 10.11959/j.issn.1000-436x.2020135 |
LI Hewu, LIU Lixin, LIU Jun, et al. Location-Based Routing Addressing Mechanism for Space-Ground Integrated Networks[J]. Journal on Communications, 2020, 41(8):120-129.
doi: 10.11959/j.issn.1000-436x.2020135 |
|
[48] | LIU D, ZHANG J K, CUI J J, et al. Deep Learning Aided Routing for Space-Air-Ground Integrated Networks Relying on Real Satellite,Flight,and Shipping Data[J]. IEEE Wireless Communications, 2022, 29(2):177-184. |
[49] |
李红艳, 张焘, 张靖乾, 等. 基于时变图的天地一体化网络时间确定性路由算法与协议[J]. 通信学报, 2020, 41(10):116-129.
doi: 10.11959/j.issn.1000-436x.2020188 |
LI Hongyan, ZHANG Tao, ZHANG Jingqian, et al. Time Deterministic Routing Algorithm and Protocol for Space-Ground Integrated Network Based on Time-Varying Graph[J]. Journal on Communications, 2020, 41(10):116-129.
doi: 10.11959/j.issn.1000-436x.2020188 |
|
[50] | WANG F, JIANG D D, WANG Z H, et al. Fuzzy-CNN Based Multi-Task Routing for Integrated Satellite-Terrestrial Networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2):1913-1926. |
[51] | SU Y T, LIU Y Q, ZHOU Y Q, et al. Broadband LEO Satellite Communications:Architectures and Key Technologies[J]. IEEE Wireless Communications, 2019, 26(2):55-61. |
[52] | 陈金涛, 梁俊, 郭子桢, 等. 软件定义卫星网络多控制器部署策略[J]. 西安电子科技大学学报, 2022, 49(3):59-67. |
CHEN Jintao, LIANG Jun, GUO Zizhen, et al. Research on Deployment Strategy of Multiple Controllers in The Software-Defined Satellite Network[J]. Journal of Xidian University, 2022, 49(3):59-67. | |
[53] | LI T, ZHOU H, LUO H, et al. Using SDN and NFV to Implement Satellite Communication Networks[C]//International Conference on Networking and Network Applications(NaNA). Piscataway:IEEE, 2016:131-134. |
[54] | 倪少杰, 岳洋, 左勇, 等. 卫星网络路由技术现状及展望[J]. 电子与信息学报, 2023, 45(2):383-395. |
NI Shaojie, YUE Yang, ZUO Yong, et al. Current Status and Prospect of Satellite Network Routing Technology[J]. Journal of Electronics and Informatics, 2023, 45(2):383-395. | |
[55] | GUO Z, YAN Z. A Weighted Semi-Distributed Routing Algorithm for LEO Satellite Networks[J]. Journal of Network and Computer Applications, 2015, 58:1-11. |
[56] |
王继红, 石文孝. 认知无线传感器网络分簇路由协议综述[J]. 通信学报, 2018, 39(11):156-169.
doi: 10.11959/j.issn.1000-436x.2018244 |
WANG Jihong, SHI Wenxiao. Overview of Clustering Routing Protocols for Cognitive Wireless Sensor Networks[J]. Journal on Communications, 2018, 39(11):156-169.
doi: 10.11959/j.issn.1000-436x.2018244 |
|
[57] | 曹继军. 面向HPC和DC的可重构光互连网络体系结构综述[J]. 计算机工程与科学, 2022, 44(6):951-963. |
CAO Jijun. Review of Reconfigurable Optical Interconnection Network Architecture for HPC and DC[J]. Computer Engineering and Science, 2022, 44(6):951-963. | |
[58] | LI H, SHI D C, WANG W Z, et al. Secure Routing for LEO Satellite Network Survivability[J]. Computer Networks, 2022, 211:109011. |
[59] | ZHAO Z P, WU Q, LI H W, et al. LRAR:A Lightweight Risk-Avoidance Routing Algorithm for LEO Satellite Networks[C]//International Wireless Communications and Mobile Computing(IWCMC). Piscataway:IEEE, 2021:223-228. |
[60] | 毕梦格, 巨玉, 侯蓉晖. 一种环境自适应的卫星网络安全路由协议[J]. 西安电子科技大学学报, 2020, 47(1):66-72. |
BI Mengge, JU Yu, HOU Ronghui. Environmentally-Adaptive Secure Routing Protocol for Satellite Networks[J]. Journal of Xidian University, 2020, 47(1):66-72. |
[1] | 周鹏,杨军. 采用神经网络架构搜索的遥感影像分割方法[J]. 西安电子科技大学学报, 2021, 48(5): 47-57. |
|