[1] |
张良培, 沈焕锋. 遥感数据融合的进展与前瞻[J]. 遥感学报, 2016, 20(5):1050-1061.
|
|
ZHANG Liangpei, SHEN Huanfeng. Progress andFuture of Remote Sensing Data Fusion[J]. National Remote Sensing Bulletin, 2016, 20(5):1050-1061.
|
[2] |
赵伍迪, 李山山, 李安. 结合深度学习的高光谱与多源遥感数据融合分类[J]. 遥感学报, 2021, 25(7):1489-1502.
|
|
ZHAO Wudi, LI Shanshan, LI An, et al. DeepFusion of Hyperspectral Images and Multi-Source Remote Sensing Data for Classification with Convolutional Neural Network[J]. National Remote Sensing Bulletin, 2021, 25(7):1489-1502.
|
[3] |
WANG J, LI W, GAO Y, et al. Hyperspectral and SAR Image Classification via Multiscale Interactive Fusion Network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12):10823-10837.
|
[4] |
ZHU X X, TUIA D, MOU L, et al. Deep Learning in Remote Sensing:A Comprehensive Review and List of Resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4):8-36.
|
[5] |
BALL J E, ANDERSON D T, CHAN C S. Comprehensive Survey of Deep Learning in Remote Sensing:Theories,Tools,and Challenges for the Community[J]. Journal of Applied Remote Sensing, 2017, 11(4):042609.
|
[6] |
CHENG G, XIE X, HAN J, et al. Remote Sensing Image Scene Classification Meets Deep Learning:Challenges,Methods,Benchmarks,and Opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:3735-3756.
|
[7] |
JIN Q, LUO J, LI Y, et al. Scene Classification of Remote Sensing Images Based on Improved HrNet[C]// 2023 3rd International Conference on Electronic Information Engineering and Computer Science(EIECS). Piscataway:IEEE, 2023:952-958.
|
[8] |
ZHANG Z, MI X, YANG J, et al. Remote Sensing Image Scene Classification in Hybrid Classical-Quantum Transferring CNN with Small Samples[J]. Sensors, 2023, 23(18):8010.
|
[9] |
王梨名, 祁昆仑, 杨超. 弱监督尺度自适应增强的高分辨率遥感影像场景分类[J]. 遥感学报, 2023, 27(12):2815-2830.
|
|
WANG Liming, QI Kunlun, YANG Chao, et al. Weakly Supervised Scale Adaptation Data Augmentation for Scene Classification of High-Resolution Remote Sensing Images[J]. National Remote Sensing Bulletin, 2023, 27(12):2815-2830.
|
[10] |
KROUPI E, KESA M, NAVARRO-SÁNCHEZ V D, et al. Deep Convolutional Neural Networks for Land-Cover Classification with Sentinel-2 Images[J]. Journal of Applied Remote Sensing, 2019, 13(2):024525.
|
[11] |
He M, Li B, Chen H. Multi-scale 3D Deep Convolutional Neural Network for Hyperspectral Image Classification[C]// 2017 IEEE International Conference on Image Processing (ICIP). Piscataway:IEEE, 2017:3904-3908.
|
[12] |
YANG X, YE Y, LI X, et al. Hyperspectral Image Classification with Deep Learning Models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9):5408-5423.
|
[13] |
薛朝辉, 张瑜娟. 基于卷积核哈希学习的高光谱图像分类[J]. 遥感学报, 2022, 26(4):722-738.
|
|
XUE Zhaohui, ZHANG Yujuan. Supervised Hashing with RBF Kernel and Convolution for Hyperspectral Image Classification[J]. National Remote Sensing Bulletin, 2022, 26(4):722-738.
|
[14] |
熊敬伟, 潘继飞, 毕大平. 面向雷达行为识别的多尺度卷积注意力网络[J]. 西安电子科技大学学报, 2023, 50(6):62-74.
|
|
XIONG Jingwei, PAN Jifei, BI Daping, et al. Multi-Scale Convolutional Attention Network for Radar Behavior Recognition[J]. Journal of Xidian University, 2023, 50(6):62-74.
|
[15] |
QING Y, LIU W, FENG L, et al. Improved Transformer Net for Hyperspectral Image Classification[J]. Remote Sensing, 2021, 13(11):2216.
|
[16] |
AYAS S, TUNC-GORMUS E. SpectralSWIN:A Spectral-SWIN Transformer Network for Hyperspectral Image Classification[J]. International Journal of Remote Sensing, 2022, 43(11):4025-4044.
|
[17] |
CHEN Y, LI C, GHAMISI P, et al. Deep Fusion of Remote Sensing Data for Accurate Classification[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8):1253-1257.
|
[18] |
LI H, GHAMISI P, SOERGEL U, et al. Hyperspectral and LiDAR Fusion Using Deep Three-Stream Convolutional Neural Networks[J]. Remote Sensing, 2018, 10(10):1649.
|
[19] |
XU X, LI W, RAN Q, et al. Multisource Remote Sensing Data Classification Based on Convolutional Neural Network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(2):937-949.
|
[20] |
HANG R, LI Z, GHAMISI P, et al. Classification of Hyperspectral and LiDAR Data Using Coupled CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7):4939-4950.
|
[21] |
ZHAO X, TAO R, LI W, et al. Joint Classification of Hyperspectral and LiDAR Data Using Hierarchical Random Walk and Deep CNN Architecture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(10):7355-7370.
|
[22] |
MOHLA S, PANDE S, BANERJEE B, et al. Fusatnet:Dual Attention Based Spectrospatial Multimodal Fusion Network for Hyperspectral and Lidar Classification[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE, 2020:92-93.
|
[23] |
WANG X, FENG Y, SONG R, et al. Multi-Attentive Hierarchical Dense Fusion Net for Fusion Classification of Hyperspectral and LiDAR Data[J]. Information Fusion, 2022, 82:1-18.
|
[24] |
SHI X, LIN J, RAO Y, et al. Gated-Cross Aggregation Network for Hyperspectral and LiDAR Data Classification[C]// IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium. Piscataway:IEEE, 2023:1265-1268.
|
[25] |
HONG D, HAN Z, YAO J, et al. SpectralFormer:Rethinking Hyperspectral Image Classification with Transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:1-15.
|
[26] |
XUE Z, TAN X, YU X, et al. Deep Hierarchical Vision Transformer for Hyperspectral and LiDAR Data Classification[J]. IEEE Transactions on Image Processing, 2022, 31:3095-3110.
doi: 10.1109/TIP.2022.3162964
pmid: 35404817
|