西安电子科技大学学报 ›› 2024, Vol. 51 ›› Issue (6): 159-170.doi: 10.19665/j.issn1001-2400.20240801

• 计算机科学与技术 & 网络空间安全 • 上一篇    下一篇

融合PVTv2和动态感知的视网膜分级算法

梁礼明(), 金家新(), 李俞霖(), 董信()   

  1. 江西理工大学 电气工程与自动化学院,江西 赣州 341000
  • 收稿日期:2024-05-15 出版日期:2024-08-20 发布日期:2024-08-20
  • 通讯作者: 金家新(1999—),男,江西理工大学硕士研究生,E-mail:18879586512@163.com
  • 作者简介:梁礼明(1967—),男,教授,E-mail:9119890012@jxust.edu.cn;
    李俞霖(2000—),男,江西理工大学硕士研究生,E-mail:liyulin000821@163.com;
    董 信(1997—),男,江西理工大学硕士研究生,E-mail:19169451053@163.com
  • 基金资助:
    国家自然科学基金资助项目(51365017);国家自然科学基金资助项目(61463018);江西省自然科学基金资助项目(20192BAB205084);江西省教育厅科学技术研究青年项目(GJJ2200848)

Retina grading algorithm integrating PVTv2 and dynamic perception

LIANG Liming(), JIN Jiaxin(), LI Yulin(), DONG Xin()   

  1. School of Electrical Engineering and Automation,Jiangxi University of Science and Technology,Ganzhou 341000,China
  • Received:2024-05-15 Online:2024-08-20 Published:2024-08-20

摘要:

针对视网膜病变分级中存在的图像质量差异和病变区域特征识别困难等问题,提出一种融合PVTv2和动态感知的视网膜分级算法,即先对Eye-Quality数据集进行质量评估,随后进行病变分级。该算法首先对数据集进行灰度化、高斯滤波等操作,凸显病灶区域与噪声背景的差异,其后由PVTv2骨干网络对视网膜图像进行多尺度特征提取,实现多尺度特征纹理的全面捕捉;然后利用并行化区域感知模块和通道重建单元模块,抑制背景区域的干扰信息并聚焦病变特征区域,提升模型的特征识别能力;再通过动态自适应特征融合模块,建立全局特征与局部特征间的动态联系,获取深层语义信息与边缘细节信息;最后采用混合损失函数缓解样本分布不均匀问题,进一步增强模型的视网膜分级效果。质量分级实验中在Eye-Quality数据集上准确率和精确度分别为88.68%和87.72%。在此基础上进行病变分级,使用准确率为评价指标,其优质、可用和拒绝分别为80.23%、74.37%和73.73%。结果表明图像质量的差异将影响病变分级效果,为视网膜分级智能辅助诊断提供了新窗口。

关键词: 病变分级, 质量分级, 并行模块, 自适应模块

Abstract:

To address the challenges of image quality variations and difficulty in lesion area recognition in retinal lesion grading,a novel retinal grading algorithm that integrates PVTv2 and dynamic perception is proposed.Initially,the Eye-Quality dataset undergoes the quality assessment followed by lesion grading.The algorithm first preprocesses the dataset with grayscale conversion and Gaussian filtering to enhance the contrast between lesion regions and background noise.Subsequently,the PVTv2 backbone network performs multi-scale feature extraction on retinal images,achieving the comprehensive capture of multi-scale textural features.Parallel region perception modules and channel reconstruction units are employed to suppress background interference and focus on lesion features,enhancing feature recognition capabilities.A dynamic adaptive feature fusion module establishes connections between global semantic information and edge details.Finally,a hybrid loss function alleviates class imbalance issues,further improving the retinal grading performance.In quality grading experiments on the Eye-Quality dataset,the accuracy and precision are 88.68% and 87.72%,respectively.Then,using accuracy as the evaluation metric for lesion grading based on this foundation,the rates for excellent,usable,and rejectable categories are 80.23%,74.37%,and 73.73%,respectively.These results highlight the impact of image quality differences on lesion grading effectiveness,providing a new avenue for intelligent auxiliary diagnosis in retinal grading.

Key words: lesion grading, quality grading, parallel module, adaptive module

中图分类号: 

  • TP391