[1] |
姜来为, 顾海洋, 谢丽霞, 等. 机器学习在WSN入侵检测中的应用研究[J]. 西安电子科技大学学报, 2024, 51(4):206-225.
|
|
JIANG Laiwei, GU Haiyang, XIE Lixia, et al. Research on The Application of Machine Learning to Intrusion Detection in WSN[J]. Journal of Xidian University, 2024, 51(4):206-225.
|
[2] |
王志强, 陈力园, 代蛟. 基于WTGWO的无线传感器网络三维部署优化方法[J]. 吉林大学学报(理学版), 2024, 62(2):410-416.
|
|
WANG Zhiqiang, CHEN Liyuan, DAI Jiao. Three-Dimensional Deplotment Optimization Method of Wireless Sensor Network Based on WTGWO[J]. Journal of Jilin University(Science Edition), 2024, 62(2):410-416.
|
[3] |
ABHILASH S, SANDEEP S, JITENDRA S. Nature-Inspired Algorithms for Wireless Sensor Networks:A Comprehensive Survey[J]. Computer Science Review, 2021, 39(2):100342.1-23.
|
[4] |
贾润亮, 张海玉. 改进群体智能算法的无线传感器网络覆盖优化[J]. 西南大学学报(自然科学版), 2024, 46(1):155-166.
|
|
JIA Runliang, ZHANG Haiyu. Improved Population Intelligence Algorithm for Wireless Sensor Network Coverage Optimization[J]. Journal of Southwest University(Natural Science Edition), 2024, 46(1):155-166.
|
[5] |
周璇. 改进的群智能优化算法及其在WSN上的应用[D]. 西安: 西安电子科技大学, 2022.
|
[6] |
SEREDYŃSKI F, KULPA T, HOFFMANN R, et al. Coverage and Lifetime Optimization by Self-Optimizing Sensor Networks[J]. Sensors, 2023, 23(8):393.
|
[7] |
张永, 韩睿, 徐华荣, 等. 基于改进樽海鞘群的障碍物环境WSN节点覆盖优化[J]. 仪表技术与传感器, 2023, 10:85-92.
|
|
ZHANG Yong, HAN Rui, XURonghua, et al. WSN Node Coverage Optimization Based on Improved Salp Swarm Algorithm in Obstacle Environment[J]. Instrument Technique and Sensor, 2023, 10:85-92.
|
[8] |
XU P, WU J G, SHANG C J, et al. GSMS:A Barrier Coverage Algorithm for Joint Surveillance Quality and Network Lifetime in WSNs[J]. IEEE Access, 2019, 7:159608-159621.
|
[9] |
ZHANG Q, YUAN Z, et al. A Virtual Force Interaction Scheme for Multi-robot Environment Monitoring[J]. Robotics and Autonomous Systems, 2022, 149:103967.
|
[10] |
YAO Y, LI Y, XIE D, et al. Coverage Enhancement Strategy for WSNs Based on Virtual Force-Directed Ant Lion Optimization Algorithm[J]. IEEESensors Journal, 2021, 21(17):19611-19622.
|
[11] |
陈振峰, 陈纪鑫. 基于Voronoi图的无线传感网络覆盖盲区检测方法[J]. 传感技术学报, 2024, 37(1):136-141.
|
|
CHEN Zhenfeng, CHEN Jixin. Coverage Blind Spot Detection Methods for Wireless Sensing Network Based on Voronoi Diagram[J]. Chinese Journal of Sensors and Actuators, 2024, 37(1):136-141.
|
[12] |
胡珊珊. 基于群智能算法的WSN覆盖优化研究[D]. 西安: 西安邮电大学, 2023.
|
[13] |
张浩, 覃涛, 徐凌桦, 等. 改进多目标蚁狮算法的WSNs节点部署策略[J]. 西安电子科技大学学报, 2022, 49(5):47-59.
|
|
ZHANG Hao, QIN Tao, XU Linghua, et al. WSNs Node Deployment Strategy Based on the Improved Multi-objective Ant-lion Algorithm[J]. Journal of Xidian University, 2022, 49(5):47-59.
|
[14] |
范星泽, 禹梅. 改进灰狼算法的无线传感器网络覆盖优化[J]. 计算机科学, 2022, 49(S1):628-631.
|
|
FAN Xingze, YU Mei. Coverage Optimization of WSN Based on lmproved Grey Wolf Optimizer[J]. Computer Science, 2022, 49(S1):628-631.
|
[15] |
徐一鸣, 彭勇, 郑楚红, 等. 基于改进粒子群算法的WSNs节点能量均衡覆盖策略[J]. 传感器与微系统, 2020, 39(2):29-32.
|
|
XU Yiming, PENG Yong, ZHENG Chuhong. et al. Node Energy Balanced Coverage Strategy in WSNs Based on Improved PSO Algorithm[J]. Transducer and Microsystem Technologies, 2020, 39(2):29-32.
|
[16] |
GHAREHCHOPOGH F S, NAMAZI M, EBRAHIMI L, et al. Advances in Sparrow Search Algorithm:A Comprehensive Survey[J]. Archives of Computational Methods in Engineering:State of the Art Reviews, 2023, 30(1):427-455.
|
[17] |
徐鹏飞. 基于麻雀搜索算法的改进研究与应用[D]. 重庆: 西南大学, 2022.
|
[18] |
张一乔. 麻雀算法的改进与应用研究[D]. 武汉: 华中农业大学, 2022.
|
[19] |
李昕燃, 靳伍银. 基于改进麻雀算法优化支持向量机的滚动轴承故障诊断研究[J]. 振动与冲击, 2023, 42(6):106-114.
|
|
LI Xinran, JIN Wuyin. Fault Diagnosis of Rolling Bearings Based on ISSA-SV[J]. Journal of Vibration and Shock, 2023, 42(6):106-114.
|
[20] |
付华, 刘昊. 多策略融合的改进麻雀搜索算法及其应用[J]. 控制与决策, 2022, 37(1):87-96.
|
|
FU Hua, LIU Hao. Improved Sparrow Search Algorithm with Multi-strategy Integration and Its Application[J]. Control and Decision, 2022, 37(1):87-96.
|
[21] |
亓玉腾. 无线传感网络目标探测技术研究[D]. 西安: 西安电子科技大学, 2023.
|
[22] |
HOUSSEIN E H, SAAD M R, HASHIM F A, et al. Lévy Flight Distribution:A New Metaheuristic Algorithm for Solving Engineering Optimization Problems[J]. Engineering Applications of Artificial Intelligence, 2020, 94:103731.
|
[23] |
徐洪丽. 基于混沌系统的群智能优化算法研究[D]. 北京: 中国矿业大学(北京), 2015.
|
[24] |
单梁, 强浩, 李军, 等. 基于Tent映射的混沌优化算法[J]. 控制与决策, 2005, 20(2):179-182.
|
|
SHAN Liang, QIANG Hao, LI Jun, et al. Chaotic Optimization Algorithm Based on Tent Map[J]. Control and Decision, 2005, 20(2):179-182.
|
[25] |
滕志军, 吕金玲, 郭力文, 等. 一种基于Tent映射的混合灰狼优化的改进算法[J]. 哈尔滨工业大学学报, 2018, 50(11):40-49.
|
|
TENG Zhijun, LV Jinling, GUO Liwen, et al. An Improved Hybrid Grey Wolf Optimization Algorithm Based on Tent Mapping[J]. Journal of Harbin Institute of Technology, 2018, 50(11):40-49.
|
[26] |
LAWNIK M. Analysis of the Chaotic Maps Generating Different Statistical Distributions[J]. Journal of Physics:Conference Series, 2015, 633(1):012086.
|
[27] |
LONG W, JIAO J, LIANG X, et al. A Random Opposition-based Learning Grey Wolf Optimizer[J]. IEEE Access, 2019, 7:113810-113825.
doi: 10.1109/ACCESS.2019.2934994
|
[28] |
LI Q, YI Q, TANG R, et al. A Hybrid Optimization from Two Virtual Physical Force Algorithms for Dynamic Node Deployment in WSN Applications[J]. Sensors, 2019, 19(23):5108.
|
[29] |
胡小平, 曹敬. 改进灰狼优化算法在WSN节点部署中的应用[J]. 传感技术学报, 2018, 31(5):753-758.
|
|
HU Xiaoping, CAO Jing. Improved Grey Wolf Optimization Algorithm for WSN Node Deployment[J]. Chinese Journal of Sensors and Actuators, 2018, 31(5):753-758.
|