西安电子科技大学学报 ›› 2025, Vol. 52 ›› Issue (1): 152-162.doi: 10.19665/j.issn1001-2400.20240906

• 计算机科学与技术 & 网络空间安全 • 上一篇    下一篇

面向直觉推理的量子效应交通预测算法研究

王潮1(), 蒋晓锋1(), 王苏敏1,2()   

  1. 1.上海大学 特种光纤与光接入网重点实验室,上海 200444
    2.赣南科技学院 信息工程学院,江西 赣州 341000
  • 收稿日期:2023-11-23 出版日期:2025-03-13 发布日期:2025-03-13
  • 通讯作者: 王苏敏(1986—),女,上海大学博士研究生,E-mail:25970264@qq.com
  • 作者简介:王 潮(1971—),男,教授,博士,E-mail:wangchao@shu.edu.cn
    蒋晓锋(1999—),男,上海大学硕士研究生,E-mail:shu_jxf@163.com
  • 基金资助:
    中国人工智能学会-华为MindSpore学术奖励基金(21JZ00084);国防创新特区项目

Research on the quantum effect traffic prediction algorithm oriented towards intuitive reasoning

WANG Chao1(), JIANG Xiaofeng1(), WANG Sumin1,2()   

  1. 1. Key Laboratory of Special Optical Fiber and Optical Access Network,Shanghai University, Shanghai 200444,China
    2. Shool of Information Engineering University of Scienceand Technology,Ganzhou 341000,China
  • Received:2023-11-23 Online:2025-03-13 Published:2025-03-13

摘要:

准确的实时交通预测是实现智能交通系统的核心技术问题。目前已有的预测方法在考虑交通信息的时空特征时,忽略了道路之间空间特征的依赖程度差异,导致预测模型缺乏差异化设计,无法实现对单条道路的精准预测。为了更好地分析道路之间空间特征的依赖程度差异性,设计了面向直觉推理的量子效应交通预测模型。引入直觉推理的思想对路网结构进行编码、组合和比较,分离出在空间特征上高度相关的道路集群,使用量子退火算法优化聚类结果,从而逼近全局最优解。使用华为云研发的MindSpore框架,根据不同的集群构建集群预测模型,专注于每个集群内交通信息的时空特征。在2012年美国洛杉矶高速公路和2021年日本东京1 843条高速公路收集的真实数据集上进行实验,并与历史平均值模型、自回归积分平均移动模型、图卷积网络、门控循环单元和时空图卷积网络进行对比。结果表明,在均方根误差、平均绝对误差、准确率、决定系数和解释差异得分5个指标上均优于上述基线。在两个真实数据集上的均方根误差表现相较基于时空图卷积网络的预测模型分别提升了11.32%和13.86%,为目前交通预测问题提供了一种新的、有效的解决方案。

关键词: 直觉推理, 量子计算机, 量子退火算法, 深度学习, 交通预测

Abstract:

The accurate real-time traffic prediction is the fundamental technological challenge in realizing an intelligent transportation system.Current prediction methods overlook the varying degree of spatial dependence between roads when considering the spatio-temporal characteristics of traffic information,leading to a lack of differentiated design in prediction models and inaccurate predictions for individual roads.To better analyze the differences in spatial features between roads,a quantum effect traffic prediction model is designed for intuitive reasoning.This paper introduces the concept of intuitive reasoning to encode,combine,and compare road network structures,identifying highly correlated road clusters based on spatial features.The quantum annealing algorithm optimizes clustering results towards approximating global optimal solutions.Prediction models are built using the Huawei Cloud's MindSpore framework based on different clusters,focusing on the spatio-temporal characteristics within each cluster.Experiments conducted on real datasets from Los Angeles freeways in 2012 and Tokyo's 1843 freeways in 2021 are compared with various baseline models such as the History Average model,Autoregressive Integrated Moving Average model,Graph Convolutional Network,Gate Recurrent Unit,and Temporal Graph Convolutional Network.The root mean squared error performance on the two real data sets is improved by 11.32%和13.86% compared with the Temporal Graph Convolutional Network,which provides a new and effective solution to the current traffic prediction problem.

Key words: intuitive reasoning, quantum computers, quantum annealing algorithm, deep learning, traffic prediction

中图分类号: 

  • TN915