| [1] |
LIN C, LU J, WANG G, et al. Graininess-Aware Deep Feature Learning for Robust Pedestrian Detection[J]. IEEE Transactions Image Processing, 2020, 29:3820-3834.
|
| [2] |
LIU W, LIAO S, HU W. Efficient Single-Stage Pedestrian Detector by Asymptotic Localization Fitting and Multi-Scale Context Encoding[J]. IEEE Transactions Image Processing, 2020, 29:1413-1425.
|
| [3] |
CAO J, PANG Y, HAN J, et al. Taking a Look at Small-Scale Pedestrians and Occluded Pedestrians[J]. IEEE Transactions Image Processing, 2020, 29:3143-3152.
|
| [4] |
HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]// Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition(CVPR2016). Piscataway:IEEE, 2016:770-778.
|
| [5] |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6):1137-1149.
|
| [6] |
王子晔, 苗夺谦, 赵才荣. 基于多粒度特征的行人跟踪检测结合算法[J]. 计算机研究与发展, 2020, 57(5):996-1002.
|
|
WANG Zhiye, MIAO Duoqian, ZHAO Cairong, et al. A Pedestrian Tracking Algorithm Based on Multi-Granularity Feature[J]. Journal of Computer Research and Development, 2015, 57(5):996-1002.
|
| [7] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal Loss for Dense Object Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):318-32.
|
| [8] |
REN J, CHEN X, LIU J, et al. Accurate Single Stage Detector Using Recurrent Rolling Convolution[C]// Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition(CVPR2017). Piscataway:IEEE, 2017:5420-5428.
|
| [9] |
SHAO Z, CHENG G, MA J, et al. Real-Time and Accurate UAV Pedestrian Detection for Social Distancing Monitoring in COVID-19 Pandemic[J]. IEEE Transactions on Multimedia, 2021, 24:2069-2083.
|
| [10] |
XIE J, PANG Y, KHAN M H, et al. Mask-Guided Attention Network and Occlusion-Sensitive Hard Example Mining for Occluded Pedestrian Detection[J]. IEEE Transactions on Image Processing, 2020, 30:3872-3884.
|
| [11] |
ZOU F, LI X, XU Q, et al. Correlation-and-Correction Fusion Attention Network for Occluded Pedestrian Detection[J]. IEEE Sensors Journal, 2023, 23(6):6061-6073.
|
| [12] |
XIE J, PANG Y, CHOLAKKAL H, et al. PSC-Net:Learning Part Spatial Co-ccurrence for Occluded Pedestrian Detection[J]. Science China Information Sciences, 2021, 64(2):1-13.
|
| [13] |
WU J, ZHOU C, ZHANG Q, et al. Self-Mimic Learning for Small-Scale Pedestrian Detection[C]// Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020:2012-2020.
|
| [14] |
WANG H, LI Y, WANG S. Fast Pedestrian Detection with Attention-Enhanced Multi-Scale RPN and Soft-Cascaded Decision Trees[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(12):5086-5093.
|
| [15] |
ZHANG T, YE Q, ZHANG B, et al. Feature Calibration Network for Occluded Pedestrian Detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(5):4151-4163.
|
| [16] |
XIE J, CHOLAKKAL H, ANWER R M, et al. Count-andSimilarity-Aware R-CNN for Pedestrian Detection[C]// Proceedings of the 16th European Conference on Computer Vision. Berlin:Springer, 2020:1-16.
|
| [17] |
WU J, ZHOU C, YANG M, et al. Temporal Context Enhanced Detection of Heavily Occluded Pedestrians[C]// Proceedings of the 33rd IEEE Conference on Computer Vision and Pattern Recognition(CVPR2020). Piscataway:IEEE, 2020:13430-13439.
|
| [18] |
NOH J, LEE S, KIM B, et al. Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors[C]// Proceedings of the 31st IEEE Conference on Computer Vision and Pattern Recognition(CVPR2018). Piscataway:IEEE, 2018:966-974.
|
| [19] |
ZHOU C, YUAN J. Multi-Label Learning of Part Detectors for Heavily Occluded Pedestrian Detection[C]// Proceedings of the 16th IEEE International Conference on Computer Vision(ICCV2017). Piscataway:IEEE, 2017:3486-3495.
|
| [20] |
ZHANG T, HAN Z, XU H, et al. CircleNet:Reciprocating Feature Adaptation for Robust Pedestrian Detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(11):4593-4604.
|
| [21] |
ZHANG S, YANG J, SCHIELE B. Occluded Pedestrian Detection Through Guided Attention in CNNs[C]// Proceedings of the 31st IEEE Conference on Computer Vision and Pattern Recognition(CVPR2018). Piscataway:IEEE, 2018:6995-7003.
|
| [22] |
ZHOU C, YUAN J. Bi-Box Regression for Pedestrian Detection and Occlusion Estimation[C]// Proceedings of the 15th European Conference on Computer Vision(ECCV2018). Berlin:Springer, 2018:135-151.
|
| [23] |
汪昱东, 郭继昌, 王天保. 一种改进的雾天图像行人和车辆检测算法[J]. 西安电子科技大学学报, 2020, 47(4):70-77.
|
|
WANG Yudong, GUO Jichang, WANG Tianbao. Algorithm for Foggy-Image Pedestrian and Vehicle Detection[J]. Journal of Xidian University, 2020, 47(4):70-77.
|
| [24] |
LI W, HAN S, LIU Y. A Pedestrian Detection Algorithm Based on Channel Attention Mechanism[C]// Proceedings of the 33rd Chinese Control and Decision Conference(CCDC2021). Piscataway:IEEE, 2021:5954-5959.
|
| [25] |
LI Y, WANG Q, LIU R. Research on YOLOv3 Pedestrian Detection Algorithm Based on Channel Attention Mechanism[C]// Proceedings of the 1st IEEE International Conference on Computer Science,Electronic Information Engineering and Intelligent Control Technology(CEI2021). Piscataway:IEEE, 2021:229-232.
|
| [26] |
WANG X, HU H, ZHANG Y. Pedestrian Detection Based on Spatial Attention Module for Outdoor Video Surveillance[C]// Proceedings of IEEE 5th International Conference on Multimedia Big Data(BigMM2019). Piscataway:IEEE, 2019:247-251.
|
| [27] |
FU J, LIU J, TIAN H, et al. Dual Attention Network for Scene Segmentation[C]// Proceedings of the 32nd IEEE Conference on Computer Vision and Pattern Recognition(CVPR2019). Piscataway:IEEE 2019:3141-3149.
|
| [28] |
SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training Region-Based Object Detectors with Online Hard Example Mining[C]// Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition(CVPR2016). Piscataway:IEEE, 2016:761-769.
|
| [29] |
ZHANG S, BENENSON R, SCHIELE B. Citypersons:A Diverse Dataset for Pedestrian Detection[C]// Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition(CVPR2017). Piscataway:IEEE, 2017:3213-3221.
|
| [30] |
DOLLAR P, WOJEK C, SCHIELE B,etal. Pedestrian Detection:An Evaluation of the State of the Art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 34(4):743-761.
|
| [31] |
GAO F, CAI Y, DENG F, et al. Feature Alignment in Anchor-Free Object Detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(8):3799-3810.
|
| [32] |
CHEN Y, YE J, WAN X. TF-YOLO:A Transformer-Fusion-Based YOLO Detector for Multimodal Pedestrian Detection in Autonomous Driving Scenes.[J]. World Electric Vehicle Journal. 2023; 14(12):352.
|
| [33] |
ZHANG S, WEN L, BIAN X, et al. Occlusion-Aware R-CNN:Detecting Pedestrians in a Crowd[C]// Proceedings of the 15th European Conference on Computer Vision(ECCV2018). Berlin:Springer, 2018:637-653.
|
| [34] |
TIAN Y, LUO P, WANG X, et al. DeepLearning Strong Parts for Pedestrian Detection[C]// Proceedings of the 15th IEEE International Conference on Computer Vision(ICCV). Piscataway:IEEE, 2015:1904-1912.
|
| [35] |
QIU T, WANG L, WANG P, et al. Research on Object Detection Algorithm Based on Improved YOLOv5[J]. Journal of Computer Engineering & Applications, 2022, 58(13):63-73.
|
| [36] |
CONG C, YANG Z, SONG Y, et al. Towards Enforcing Social Distancing Regulations with Occlusion-Aware Crowd Detection[C]// Proceedings of the 16th International Conference on Control,Automation,Robotics and Vision(ICARCV2020). Piscataway:IEEE, 2020:297-302.
|
| [37] |
SHAO S, ZHAO Z, LI B, et al. Crowdhuman:A Benchmark for Detecting Human in a Crowd(2023)[J/OL]. [2023-6-10].https://doi.org/10.48550/arXiv.1805.00123.
|
| [38] |
CHEN K, WANG J, PANG J, et al. MMDetection:OpenMmlab Detection Toolbox and Benchmark(2023)[J/OL]. [2023-6-17].https://doi.org/10.48550/arXiv.1906.07155.
|
| [39] |
KINGMA D P, BA J. Adam:A Method for Stochastic Optimization(2023)[J/OL]. [2023-6-22].https://doi.org/10.48550/arXiv.1412.6980.
|
| [40] |
LIN Z, PEI W, CHEN F, et al. Pedestrian Detection by Exemplar-Guided Contrastive Learning[J]. IEEE Transactions on Image Processing, 2022, 32:2003-2016
|
| [41] |
WANG X, XIAO T, JIANG Y, et al. Repulsion Loss:Detecting Pedestrians in a Crowd[C]// Proceedings of the 31st IEEE Conference on Computer Vision and Pattern Recognition(CVPR2018). Piscataway:IEEE, 2018:7774-7783.
|
| [42] |
ZHANG S, BENENSON R, OMRAN M, et al. How Far Are We From Solving Pedestrian Detection?[C]// Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition(CVPR2016). Piscataway:IEEE, 2016:1259-1267.
|
| [43] |
BRAZIL G, LIU X. Pedestrian Detection with Autoregressive Network Phases[C]// Proceedings of the 32nd IEEE Conference on Computer Vision and Pattern Recognition(CVPR2019). Piscataway:IEEE, 2019:7231-7240.
|
| [44] |
BRAZIL G, YIN X, LIU X. Illuminating Pedestrians via Simultaneous Detection & Segmentation[J]. IEEE International Conference on Computer Vision, 2017:4950-4959.
|
| [45] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD:Single Shot Multibox Detector[C]// Proceedings of Computer Vision-ECCV 2016:14th European Conference. Berlin:Springer, 2016:21-37.
|
| [46] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal Loss for Dense Object Detection(2023)[J/OL]. [2023-6-27].https://doi.org/10.48550/arXiv.1708.02002.
|
| [47] |
REN S, HE K, GIRSHICK R B, et al. Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39:1137-1149.
|