西安电子科技大学学报 ›› 2024, Vol. 51 ›› Issue (6): 171-181.doi: 10.19665/j.issn1001-2400.20240911

• 计算机科学与技术 & 网络空间安全 • 上一篇    下一篇

改进SwinIR的多特征融合图像超分辨率重建

王进花1(), 魏婷1(), 曹洁1,2,3(), 陈莉3()   

  1. 1.兰州理工大学 电气工程与信息工程学院,甘肃 兰州 730050
    2.甘肃省制造信息工程研究中心,甘肃 兰州 730050
    3.兰州城市学院 信息工程学院,甘肃 兰州 730050
  • 收稿日期:2024-06-02 出版日期:2024-12-20 发布日期:2024-10-09
  • 作者简介:王进花(1976—),女,副教授,E-mail:wjh0615@lut.edu.cn;
    魏 婷(1996—),女,兰州理工大学硕士研究生,E-mail:wting09162022@163.com;
    曹 洁(1966—),女,教授,E-mail:caoj@lut.edu.cn;
    陈 莉(1979—),女,教授,E-mail:lichen_79@163.com
  • 基金资助:
    国家自然科学基金(62063020);甘肃省重点研发计划项目(22YF7GA130);甘肃省自然科学基金(20JR5RA463)

Improved SwinIR for multi-feature fusion image super-resolution reconstruction

WANG Jinhua1(), WEI Ting1(), CAO Jie1,2,3(), CHEN Li3()   

  1. 1. School of Electrical Engineering and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China
    2. Gansu Manufacturing Information Engineering Research Center,Lanzhou 730050,China
    3. College of Information Engineering,Lanzhou City University,Lanzhou 730050,China
  • Received:2024-06-02 Online:2024-12-20 Published:2024-10-09

摘要:

针对目前基于先进方法SwinIR在图像超分辨率重建过程中,存在对低分辨率图像局部信息建模能力不足导致特征提取不充分使重建图像质量不佳的问题,提出了一种改进SwinIR的多特征融合图像超分辨率重建方法。所提算法在深层特征提取模块部分,首先设计了若干个串联的残差Swin Transformer块(RSTB),利用RSTB的Swin Transformer层进行长距离依赖建模提取图像的高频信息,使用残差连接实现不同级别特征聚合。其次,设计了交替串联的空间注意力模块和通道注意力模块,弥补RSTB局部建模能力的不足,使网络能够捕捉到图像空间与通道维度遗漏的上下文信息,促进边缘细节信息的重建。最后,通过长跳跃连接将浅层特征与深层特征求和进行融合传输到重建模块进行高质量图像重建。实验结果表明:在放大倍数为2、3、4的4个测试集上,所提改进算法相较SwinIR在峰值信噪比和结构相似度上均取得了较好的结果,而且在视觉效果上重建图像的边缘结构和整体轮廓都更加清晰。

关键词: 图像超分辨率重建, Swin Transformer, 空间注意力, 通道注意力, 多特征融合

Abstract:

In the process of image super-resolution reconstruction based on the advanced SwinIR method,there is a problem that the local information modeling ability of low-resolution images is insufficient,resulting in inadequate feature extraction and poor quality of reconstructed images.An improved SwinIR multi-feature fusion image super-resolution reconstruction method is proposed.In the deep feature extraction module,the proposed algorithm first designs several series residual Swin Transformer blocks(RSTB),uses the Swin Transformer layer(STL) of RSTB for long-distance dependent modeling to extract high-frequency image information,and uses residual connections to achieve different levels of feature aggregation.Second,an alternating series spatial attention module and channel attention module(SA-CA) are designed to make up for the lack of local modeling ability of RSTB,so that the network can capture the missing context information on image space and channel dimension,and promote the reconstruction of edge details.Finally,the summation of shallow features and deep features is fused and transmitted to the reconstruction module for high-quality image reconstruction through along jump connection.Experimental results show that in the four test sets with magnifications of 2,3,and 4,the proposed improved algorithm achieves better results than SwinIR in terms of the peak signal-to-noise ratio and structural similarity,and the edge structure and overall contour of the reconstructed image are clearer in terms of visual effects.

Key words: image super-resolution reconstruction, swin transformer, spatial attention, channel attention, multi-feature fusion

中图分类号: 

  • TP391