[1] |
JIANG J J, WANG C Y, LIU X M, et al. Deep Learning-based Face Super-resolution:A Survey[J]. ACM Computing Surveys, 2023, 55(1).
|
[2] |
詹克羽, 孙岳, 李颖. 一种多尺度三维卷积的视频超分辨率方法[J]. 西安电子科技大学学报, 2021, 48(5):8-14.
|
|
ZHAN Keyu, SUN Yue, LI Ying. A Multi-scale 3D Convolution Video Super Resolution Method[J]. Journal of Xidian University, 2021, 48(5):8-14.
|
[3] |
REN S, GUO K H, ZHOU X K, et al. Medical Image Super-Resolution Based on Semantic Perception Transfer Learning[J]. IEEE-Acm Transactions on Computational Biology and Bioinformatics, 2023, 20(4):2598-2609.
|
[4] |
须颖, 刘帅, 邵萌, 等. 一种多尺度GAN的低剂量CT超分辨率重建方法[J]. 西安电子科技大学学报, 2022, 49(2):228-236.
|
|
XU Ying, LIU Shuai, SHAO Meng, et al. A Multi-scale,Low-dose CT Super-resolution Reconstruction Method for GAN[J]. Journal of Xidian University, 2022, 49(2):228-236.
|
[5] |
李嫣, 任文琦, 张长青, 等. 基于真实退化估计与高频引导的内窥镜图像超分辨率重建[J]. 自动化学报, 2024, 50(2):334-347.
|
|
LI Yan, REN Wenqi, ZHANG Changqing, et al. Super-resolution Reconstruction of Endoscopic Images Based on True Degradation Estimation and High-frequency Guidance[J]. Acta Automatica Sinica, 2024, 50(2):334-347.
|
[6] |
HAN Z T, HUANG W H. Arbitrary Scale Super-resolution Diffusion Model for Brain MRI Images[J]. Computers in Biology and Medicine, 2024,170.
|
[7] |
TSUTSUMI M, TAKAHASHI T, KOBAYASHI K, et al. Fluorescence Radial Fluctuation Enables Two-photon Super-resolution Microscopy[J]. Frontiers in Cellular Neuroscience, 2023,17.
|
[8] |
XIE B K, LIU S B, LI L. Large-scale Microscope with Improved Resolution Using SRGAN[J]. Optics and Laser Technology, 2024,179.
|
[9] |
ZHANG M, XIN J, ZHANG J, et al. Curvature Consistent Network for Microscope Chip Image Super-Resolution[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12):10538-10551.
|
[10] |
CHEN J, HUANG S X, CHAN K F, et al. A Hybrid Lens to Realize Electrical Real-Time Super-Resolution Imaging[J]. Laser & Photonics Reviews, 2024.
|
[11] |
WANG X, SUN L J, CHEHRI A, et al. A Review of GAN-Based Super-Resolution Reconstruction for Optical Remote Sensing Images[J]. Remote Sensing, 2023, 15(20).
|
[12] |
时文俊, 郭从洲, 童晓冲, 等. 辐射保真的红外遥感图像超分辨率重建[J]. 西安电子科技大学学报, 2019, 46(2):107-113.
|
|
SHI Wenjun, GUO Congzhou, TONG Xiaochong, et al. Super Resolution Reconstruction of Infrared Remote Sensing Image Based on Radiation Fidelity[J]. Journal of Xidian University, 2019, 46(2):107-113.
|
[13] |
李明锴, 徐其志. 分级监督范式指导下的遥感图像超分辨率方法[J]. 遥感学报, 2024, 28(7):1746-1759.
|
|
LI Ming Kai, XU Qizhi. Super Resolution Method of Remote Sensing Image Guided by Hierarchical Supervision Paradigm[J]. Journal of Remote Sensing, 2024, 28(7):1746-1759.
|
[14] |
ESTEVA A, CHOU K, YEUNG S, et al. Deep Learning-enabled Medical Computer Vision[J]. Npj Digital Medicine, 2021, 4(1):1-9.
|
[15] |
DONG C, LOY C C, HE K, et al. Image Super-Resolution Using Deep Convolutional Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307.
doi: 10.1109/TPAMI.2015.2439281
pmid: 26761735
|
[16] |
DONG C, LOY C C, TANG X O. Accelerating the Super-Resolution Convolutional Neural Network[Z]. Computer VisionI-ECCV 2016,PT II. 2016:391-407.
|
[17] |
KIM J, LEE J K, LEE K M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks[C]; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:1646-1654.
|
[18] |
TAI Y, YANG J, LIU X. Image Super-Resolution via Deep Recursive Residual Network[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017:2790-2798.
|
[19] |
LAI W S, HUANG J B, AHUJA N, et al. Fast and Accurate Image Super-Resolution with Deep Laplacian Pyramid Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11):2599-2613.
|
[20] |
ZHANG Y L, LI K P, LI K, et al. Image Super-Resolution Using Very Deep Residual Channel Attention Networks[C]. Computer Vision-ECCV 2018, PT VII.2018:294-310.
|
[21] |
XU W, CHEN R W, HUANG B, et al. Enhanced Context Attention Network for Image Super Resolution[J]. IEEE Sensors Journal, 2021, 21(10):11665-11673.
|
[22] |
YU B, LEI B, GUO J Y, et al. Remote Sensing Image Super-Resolution via Residual-Dense Hybrid Attention Network[J]. Remote Sensing, 2022, 14(22).
|
[23] |
QIN J, CHEN L, JEON S, et al. Progressive Interaction-Learning Network for Lightweight Single-Image Super-Resolution in Industrial Applications[J]. IEEE Transactions on Industrial Informatics, 2023, 19(2):2183-2191.
|
[24] |
PARK K, SOH J W, CHO N I. A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution[J]. IEEE Transactions on Multimedia, 2023, 25:907-918.
|
[25] |
CHEN H T, WANG Y H, GUO T Y, et al. Pre-Trained Image Processing Transformer[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway:IEEE, 2021:12294-12305.
|
[26] |
GUO C L, YAN Q X, ANWAR S, et al. Image Dehazing Transformer with Transmission-Aware 3D Position Embedding[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR)Piscataway: IEEE, 2022:5802-5810.
|
[27] |
LIANG J Y, CAO J Z, SUN G L, et al. SwinIR:Image Restoration Using Swin Transformer[C]. 2021 IEEE/CVF International Conference on Computer Vision Workshops(ICCV). Piscataway:IEEE, 2021:1833-1844.
|
[28] |
FANG J S, LIN H J, CHEN X Y, et al. A Hybrid Network of CNN and Transformer for Lightweight Image Super-Resolution[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition WorkshopsPiscataway: IEEE, 2022:1102-1111.
|
[29] |
CHOI H, LEE J, YANG J, et al. N-Gram in Swin Transformers for Efficient Lightweight Image Super-Resolution[Z]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway:IEEE, 2023:2071-2081.
|
[30] |
ZHOU Y P, LI Z, GUO C L, et al. SRFormer:Permuted Self-Attention for Single Image Super-Resolution[C]. 2023 IEEE/CVF International Conference on Computer Vision Workshops(ICCV). Piscataway:IEEE, 2023:12734-12745.
|
[31] |
ROSSI L, BERNUZZI V, FONTANINI T, et al. Swin2-MoSE:A New Single Image Super-Resolution Model for Remote Sensing[J]. arXiv preprint arXiv:240418924, 2024.
|
[32] |
TIMOFTE R, AGUSTSSON E, VAN GOOL L, et al. Ntire 2017 Challenge on Single Image Super-resolution:Methods and Results[J]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE, 2017:1122-1131.
|
[33] |
BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding[C]. Proceedings of the British Machine Vision Conference 2012. 2012:1-10.
|
[34] |
ZEYDE R, ELAD M, PROTTER M. On Single Image Scale-up Using Sparse-Representations[C]// International Conference on Curves and Surfaces.[S.1.]:Springer, 2010:711-730.
|
[35] |
MARTIN D, FOWLKES C, TAL D, et al. A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics[C]. Proceedings of the IEEE International Conference on Computer Vision(ICCV). Piscataway:IEEE, 2001:416-423.
|
[36] |
HUANG J B, SINGH A, AHUJA N. Single Image Super-resolution from Transformed Self-exemplars[C]. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway:IEEE, 2015:5197-5206.
|
[37] |
YUAN F, HUANG L F, YAO Y. An Improved PSNR Algorithm for Objective Video Quality Evaluation[C]. Proceedings of the 26th Chinese Control Conference, 2007:376-380.
|
[38] |
ZHOU W, BOVIK A C, SHEIKH H R, et al. Image Quality Assessment:from Error Visibility to Structural Similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612.
|
[39] |
AHN N, KANG B, SOHN K-A. Fast,Accurate,and Lightweight Super-resolution with Cascading Residual Network[C]. Proceedings of the European Conference on Computer Vision(ECCV). Piscataway:IEEE, 2018:252-268.
|
[40] |
HUI Z, GAO X, YANG Y, et al. Lightweight Image Super-resolution with Information Multi-distillation Network[C]. Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019:2024-2032.
|
[41] |
LI W, ZHOU K, QI L, et al. Lapar:Linearly-assembled Pixel-adaptive Regression Network for Single Image Super-resolution and Beyond[J]. Advances in Neural Information Processing Systems, 2020, 33:20343-20355.
|
[42] |
LUO X, XIE Y, ZHANG Y, et al. LatticeNet:Towards Lightweight Image Super-Resolution with Lattice Block; In European Conference on Computer Vision(ECCV), 2020:272-289.
|
[43] |
CHEN H, GU J, ZHANG Z. Attention in Attention Network for Image Super-resolution[J]. arXiv preprint arXiv:210409497, 2021.
|
[44] |
LU Z S, LI J C, LIU H, et al. Transformer for Single Image Super-Resolution[Z]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2022:456-465.
|
[45] |
WANG L, LI X, TIAN W, et al. Lightweight Interactive Feature Inference Network for Single-image Super-resolution[J]. Scientific Reports, 2024, 14(1):11589-11601.
|