西安电子科技大学学报 ›› 2025, Vol. 52 ›› Issue (1): 196-214.doi: 10.19665/j.issn1001-2400.20241001

• 计算机科学与技术 & 网络空间安全 • 上一篇    

神经网络差分区分器的改进方案与应用

栗琳轲1(), 陈杰1,2(), 刘君3()   

  1. 1.西安电子科技大学 通信工程学院,陕西 西安 710071
    2.河南省网络密码技术重点实验室,河南 郑州 450001
    3.陕西师范大学 计算机科学学院,陕西 西安 710119
  • 收稿日期:2024-05-24 出版日期:2024-10-15 发布日期:2024-10-15
  • 通讯作者: 陈 杰(1979—),女,副教授,E-mail:jchen@mail.xidian.edu.cn
  • 作者简介:栗琳轲(2002—),女,西安电子科技大学硕士研究生,E-mail:lilinke0000@126.com
    刘 君(1993—),女,讲师,E-mail:jliu6@snnu.edu.cn
  • 基金资助:
    国家自然科学基金(62302285);河南省网络密码技术重点实验室研究课题(LNCT2022-A08)

Improved schemes and applications of the neural network differential distinguisher

LI Linke1(), CHEN Jie1,2(), LIU Jun3()   

  1. 1. School of Telecommunications Engineering,Xidian University,Xi’an 710071,China
    2. Henan Key Laboratory of Network Cryptography Technology,Zhengzhou 450001,China
    3. School of Computer Science,Shaanxi Normal University,Xi’an 710119,China
  • Received:2024-05-24 Online:2024-10-15 Published:2024-10-15

摘要:

为深入研究深度学习在密码安全性分析方面的应用,采用神经网络对轻量级分组密码进行差分分析,主要得到以下研究结果:① 采用引入注意力机制的深度残差网络构造神经网络差分区分器,并将其应用于SIMON、SIMECK和SPECK 3类轻量级分组密码。结果表明,SIMON32/64和SIMECK32/64有效区分器最高可达11轮,精度分别为0.517 2和0.516 4;SPECK32/64有效区分器最高可达8轮,精度为0.586 8。② 探究不同的输入差分对神经网络差分区分器精度的影响。针对SIMON、SIMECK和SPECK 3类密码,采用神经网络的快速训练得到不同输入差分对应的神经网络差分区分器的精度。结果表明,低汉明重量且高概率的输入差分能够提高神经网络差分区分器的精度。同时,寻找到SIMON32/64、SIMECK32/64和SPECK32/64神经网络差分区分器的合适输入差分分别为0x0000/0040、0x0000/0001和0x0040/0000。③ 探究包含不同信息量的输入数据格式对神经网络差分区分器精度的影响。根据密码算法的特点改变输入数据包含的信息量,并重新训练相应的神经网络差分区分器。结果表明,相比于只包含密文对信息,输入数据中包含密文对信息以及倒数第2轮差分信息的神经网络差分区分器会获得更高的精度。④ 在上述研究的基础上,进一步对11轮 SIMON32/64 进行最后一轮子密钥恢复攻击,当选择明密文对的数量为29时,在100次攻击中的攻击成功率可达100%。

关键词: 神经网络, 密码学, 轻量级分组密码, 差分密码分析, 注意力机制, 神经网络差分区分器, 密钥恢复攻击

Abstract:

In order to further study the application of deep learning in cryptographic security analysis,neural networks are used for differential analysis of lightweight block cryptography.The following four research results are obtained.First,a neural network differential distinguisher is constructed by using a deep residual network with an attention mechanism,and applied to three types of lightweight block ciphers:SIMON,SIMECK and SPECK.The results show that the effective distinguisher of SIMON32/64 and SIMECK32/64 can reach up to 11 rounds,and the accuracy is 0.5172 and 0.5164,respectively.The SPECK32/64 has an effective distinguisher of up to 8 rounds with an accuracy of 0.5868.Second,the influence of different input differences on the accuracy of the neural network differential distinguisher is explored.For SIMON,SIMECK and SPECK ciphers,the accuracy of the neural network differential distinguisher corresponding to different input differences is obtained by using the fast training of neural networks.The results show that the input difference with a low Hamming weight and high probability can improve the accuracy of the neural network differential distinguisher.At the same time,the suitable input difference for the SIMON32/64,SIMECK32/64 and SPECK32/64 neural network differential distinguisher is found to be 0x0000/0040,0x0000/0001 and 0x0040/0000,respectively.Third,the influence of the input data format containing different information on the accuracy of the neural network differential distinguisher is explored.Changing the amount of information contained in the input data according to the characteristics of the cryptographic algorithm and retraining the corresponding neural network differential distinguisher.The results show that,compared to a neural network differential distinguisher that only includes ciphertext pair information,those that incorporate both ciphertext pair information and differential information from the penultimate round achieve a higher accuracy.Fourth,on the basis of the above research,the last wheel key recovery attack is carried out on 11 rounds of SIMON32/64.When 29 plaintext-ciphertext pairs are selected,the attack success rate in 100 attacks can reach 100%.

Key words: neural networks, cryptography, lightweight block cipher, differential cryptanalysis, attention mechanism, neural network differential distinguisher, key recovery attack

中图分类号: 

  • TP309.7